
Cylance Engine
Integration Guide

1.2

2024-04-09Z

 | | 2

Contents

What is the Cylance Engine?...5
Data Flow: Analyzing a file with the Cylance Engine.. 5

How the Cylance Engine analyzes a file.. 6
Scoring files with Cylance AI.. 6
Scoring and threat indicators..6

Score generated by the Cylance Engine... 6
Role of threat indicators in scoring...7

Use of centroids in the Cylance Engine... 8
Restricted and allowed list of file hashes..8

System requirements for the Cylance Engine..9
Hardware requirements... 9
Supported operating systems... 9
Requirements: Microsoft .NET.. 10
Requirements: Mono.. 10
Requirements: Python.. 10
Requirements: Multiple instances of the Cylance Engine on one machine...10

Installing and updating the Cylance Engine...12
Install the Cylance Engine on a Linux distribution.. 12
Query the version of your Cylance Engine on a Linux distribution...12
Update the version of your Cylance Engine on a Linux distribution...13
Remove the Cylance Engine from a Linux distribution... 13
Install the Cylance Engine on a Windows distribution..13
Query the version of your Cylance Engine on a Windows distribution.. 14
Update the version of your Cylance Engine on a Windows distribution.. 14
Remove the Cylance Engine from a Windows distribution...14

File-scoring service...15
Samplescored service script... 15
Sentinel file... 15
Environment variables..16
Command-line options for the Cylance Engine... 16
Configuration file for the Cylance Engine.. 18

File-scoring service protocols... 27
Cylance RESTful API.. 27

Getting model details... 28
Scoring a file... 30
Explaining the score for a file..36

 | | iii

Shutting down the service... 37
Password-protected archives...38

Appendix: Cylance Infinity Data Service.. 39
Authentication of requests.. 39
Response status codes... 39
Service endpoints... 40

Centroids endpoint..40
Wblist endpoint... 43

Appendix: Threat indicators.. 44
Anomalies..44
Collection...48
Data loss... 50
Deception.. 51
Destruction.. 55
Shellcodes... 58
Miscellaneous indicators...59

Appendix: Prometheus monitoring support... 61

Appendix: CylanceTcpService Protocol... 63
Process command... 63
Shutdown command.. 65
Multiple scores for a file... 65
Classless-based and activity-class-based scoring.. 65
Passwords specified for archives...66
File-scoring applications.. 66

Samplescore client... 66
Ttmstatic script...67
InfinityDaemonClient utility.. 68

Legal notice.. 73

 | | iv

What is the Cylance Engine?
The Cylance Engine is used to discover and classify malware using Cylance AI, the industry’s longest running,
continuously improving, predictive AI in market.

The Cylance Engine can provide two types of information about a file:

• A file score in a range from -1.0 (malicious) to +1.0 (benign)
• A set of threat indicators that helps to identify the characteristics of the file that contribute to its score

Data Flow: Analyzing a file with the Cylance Engine

When the Cylance Engine analyzes a file, the following actions occur:

1. A file is sent to the Cylance Engine for analysis.
2. The Cylance Engine analyzes the file and returns a score.
3. Optionally, the Cylance Engine can also return a set of threat indicators.

 | What is the Cylance Engine? | 5

How the Cylance Engine analyzes a file
To analyze a file, the Cylance Engine uses Cylance AI, a set of threat indicators, centroids, and a restricted and
allowed list of file hashes.

Scoring files with Cylance AI
The Cylance Engine uses Cylance AI to classify files as bad or good with a certain level of confidence. The
classification is made based on machine learning models. The models are being constantly improved using
machine learning to refine the accuracy of the results.

The models contained in this version of the Cylance Engine are listed in the table below. Each of these models
requires a corresponding dynamic library (a shared object in Linux terms).

File type Model name Extensions

Windows
executables

Ensemble-20230818-S3V3-PE7E.cym .acm, .ax, .cpl, .drv, .efi, .mui, .ocx, .src,

.sys, .tsp, .exe, .dll

macOS executables Ensemble-20210721-S3V4-MO3.cym

Ensemble-20210409-S0V2-MOFAT.cym

(none), .o, .dylib, .bundle

Linux executables Ensemble-20180730-S2V7-ELF2.cym (none), .o, .ko, .mod, .so

OLE files Ensemble-20180718-S3V3-OLE3.cym .doc, .xls, .ppt

OOXML files Ensemble-20180718-S3V3-OOXML3.cym .docx, .xlsx, .pptx

PDF files Ensemble-20230607-S3-PDF4.cym .pdf

Archive files Ensemble-20190319-S0V5-ARC.cym .zip, .7z, .rar, .tar, .gz, .bz2, .xz

Note: Files with the .zip extension are
supported whether they are password-
protected or not. Files with the .rar
extension are supported only if they are
not password-protected.

Scoring and threat indicators
A client can access two types of information from the Cylance Engine:

• A file score in a range from -1.0 (malicious) to +1.0 (benign).
• A set of threat indicators that helps to identify the characteristics of the file that contribute to its score.

Score generated by the Cylance Engine
The score represents the confidence the Cylance Engine has that a file is good or bad. Scores returned by the
Cylance Engine are decimal numbers ranging from -1.0 to +1.0. A negative value indicates that the file has been

 | How the Cylance Engine analyzes a file | 6

classified as a potentially bad file and a positive value indicates that the file has been classified as a potentially
good file. The numerical value indicates the confidence in this file being identified as a risk or not.

For example:

Score Meaning

-0.6 There is a 60% confidence level that the file is bad.

+0.6 There is a 60% confidence level that the file is good.

Note: The numerical value represents the confidence in a file being identified as a risk or not; it is not an
indication of the harmfulness of a file.

If an error occurs during the processing of the file, the score may be NaN (not a number) to indicate that a score
was not generated. In this case, the result should contain more information on the error.

Suggested implementation

As a guideline, the following conventions serve to classify the files.

Score Meaning

Less than -0.6 Malware

-0.6 to 0 Suspicious

Greater than 0 Safe

Scoring considers not only the threat indicators, but also the relationships between these and many other
characteristics of the file. Because the scoring uses complex mathematical models that operate directly on the
features of the file, it is not possible to determine the score only from the threat indicators.

Role of threat indicators in scoring
Threat indicators are observations about a file or archive that the Cylance Engine has analyzed. These indicators
help analysts better understand why the Cylance Engine has identified a file as a risk. They provide insight into
potential abuse in a quick and easy-to-use format.

It is important to note that there are legitimate uses for each of the identified indicators. The existence of an
indicator is not proof positive that an object is acting in a malicious manner. For example, if the file is a process
debugger, it may have legitimate use of SEDebugPriv or process injection. Software installers frequently bundle an
executable inside.

It is also important to note that these are specific indicators that have a high prevalence in malware, but they
do not represent the machine-learning models that we use for classifying a file as good or bad. These models
measure millions of data points, and while some of these data points correspond to these specific indicators, the
final score for a file is determined by a complex synthesis of all data points. This limited set of threat indicators
exists specifically because machine-learning models are difficult for humans to reason about.

Each indicator defines an area that has been frequently seen in malicious software. Many indicators represent
capabilities of the included binary; other indicators represent attempts at deception. Each indicator has been
identified as a frequent and strongly indicative feature based on a deep analysis of over 100 million binaries.

 | How the Cylance Engine analyzes a file | 7

Threat indicators are grouped into categories to aid in context. Categories help to identify certain potentially
undesirable or malicious capabilities.

Note: Threat indicators are available for all supported file types except for the ELF file type.

For a complete list of the threat indicators exposed and a brief description of each indicator, see Appendix: Threat
indicators.

Use of centroids in the Cylance Engine
Centroids are used to adjust the classification of a group of files by Cylance AI between updates to the Cylance
Engine. Centroids are produced whenever an adjustment is deemed necessary.

The Cylance Engine can read updated centroids in one of two ways. The first method is to read a file stored in a
local file location; the Cylance Engine periodically checks this location to see if the file has been updated. These
centroids must be downloaded manually as described in the Appendix: Cylance Infinity Data Service. Centroids
downloaded manually include all released centroids for that model.

The second method is to retrieve automatically only the centroids that the Cylance Engine does not already have,
whether they shipped with the Cylance Engine or were downloaded later, based on a manifest that contains a list
of centroids for each of the models. Retrieving the manifest is a lightweight operation. The Cylance Engine then
uses the manifest to download any centroids that it does not already have. The set of centroids downloaded in
this manner may not match those retrieved via the Infinity Public Data API for distribution-efficiency reasons. For
more information, see the ManifestCentroidUpdate section in Configuration file for the Cylance Engine.

Note: On Mono, the Amazon Root CA 1 certificate might not be installed automatically. This certificate is required
to retrieve the manifest-based centroids. You can download the certificate from https://www.amazontrust.com/
repository/AmazonRootCA1.pem and import it into the Mono certificate store using the cert-sync utility that ships
with Mono.

Restricted and allowed list of file hashes
The Cylance Engine can maintain a list of SHA256 file hashes that bypasses the machine-learning scoring
algorithm. If a file hash is present in the allowed list, the corresponding file is assigned a good score (1.0); if the
file is present in the restricted list, the file is assigned a bad score (-1.0).

BlackBerry also maintains a global restricted and allowed list of file hashes that have been determined to be bad
or good by additional qualification means outside of the machine-learning algorithm. You can download this list
using the Infinity Public Data API.

 | How the Cylance Engine analyzes a file | 8

https://www.amazontrust.com/repository/AmazonRootCA1.pem
https://www.amazontrust.com/repository/AmazonRootCA1.pem

System requirements for the Cylance Engine
To get started setting up the Cylance Engine, review this section and verify that your organization's environment
meets the requirements.

Hardware requirements
The Cylance Engine requires Intel or AMD 64-bit processors. For other architectures, contact BlackBerry customer
support. The minimum system requirements for the Cylance Engine are the same as the minimum system
requirements for the operating system.

Supported operating systems
Supported OS: Linux distributions

The Cylance Engine supports several Linux x64 distributions. This includes service scripts, manual pages, and a
sample client, all packaged into a format that the Linux distribution package manager supports. A .zip package is
also available that can be used without a distribution package manager. The following table lists the current set of
supported Linux distributions.

Operating system Minimum version Tested version

Debian 9 9, 10, 11, 12

Ubuntu 16.04 16.04, 18.04, 20.04, 22.04

CentOS 8 8

Red Hat 8 8, 9

Fedora 28 28, 33, 39

Supported OS: Windows Server versions

The Cylance Engine supports the following Windows Server x64 versions.

• Windows Server 2022 (Standard, Datacenter, and Server Core)
• Windows Server 2019 (Standard, Datacenter, and Server Core)
• Windows Server 2016 (Standard, Datacenter, Essentials, and Server Core)
• Windows Server 2012 R2 (Standard, Datacenter, Essentials, Server Core, Embedded, and Foundation)
• Windows Server 2012 (Standard, Datacenter, Essentials, Server Core, Embedded, and Foundation)

Windows support is also provided as a .zip package only with no installer. For more information, see Install the
Cylance Engine on a Windows distribution.

 | System requirements for the Cylance Engine | 9

Requirements: Microsoft .NET
Starting with the Cylance Engine version 1.2, the Cylance Engine has a package that uses the Microsoft .NET 8.0
runtime for cross-platform compatibility. The package includes the required runtime files. For more information
about Microsoft ASP.NET Core, visit the Microsoft .NET website.

The Microsoft .NET Framework runtime packages depend on libicu and libssl but are not listed as package
dependencies because their names differ on different Linux distributions. For the exact package names, see
https://github.com/dotnet/core/blob/master/Documentation/linux-prereqs.md. In the case that any required
libraries are missing, CylanceTcpService reports the missing library and exits.

Requirements: Mono
Note: The Mono versions of the Cylance Engine installation packages are no longer actively maintained.

The Cylance Engine is natively built in C# and can also use Mono for cross-platform support, although it is highly
recommended that Microsoft .NET be used instead.

The Cylance Engine installation package comes with Mono, so there is no need to install Mono before you install
the Cylance Engine.

The Mono implementation included with the Cylance Engine installation package has been tailored to the needs
of the Cylance Engine and is based on version 6.4.0. To reduce size and improve portability, any libraries or
assemblies not required have been removed. This modified version is self-contained, does not modify any system
configurations, and causes no issues with existing Mono installations. For more information about Mono, visit the
Mono Project website.

Requirements: Python
The Cylance Engine requires the installation of Python 2.7 or greater to use the included commands ttmstatic
and samplescore. Python 3.7 or greater is recommended.

Requirements: Multiple instances of the Cylance Engine on one
machine
You can run multiple instances of the Cylance Engine on the same machine (for example, one instance runs
the legacy Infinity Daemon Protocol while another instance runs the newer REST API). However, if you have not
configured the instances correctly, they may conflict with each other and cause issues. Additionally, one instance
may use all the CPU resources, which can starve other instances. BlackBerry does not recommend running
multiple instances except for the dual-protocol scenario because a single instance can service a large number of
simultaneous requests.

If you are running multiple instances, BlackBerry recommends that each instance have a separate .ini
configuration file with unique settings for the following:

• Port: The TCP port cannot be shared and each instance requires a unique port. If desired, you can specify the
port on the command line instead of in the .ini configuration file.

• Max concurrency: The number of cores available for the Cylance Engine should be divided among the
instances so that the machine is not oversubscribed. Letting all instances have access to all CPU cores can

 | System requirements for the Cylance Engine | 10

https://dotnet.microsoft.com
https://github.com/dotnet/core/blob/master/Documentation/linux-prereqs.md
http://www.mono-project.com/

result in timeouts and sluggish responses. If desired, you can specify the max concurrency on the command
line instead of the .ini configuration file.

• The file path for file logging: If the log file is not unique, it may not be possible to discern which instance
logged a given message.

• The temporary archive directory (if used): Using separate directories ensures that one instance does
not accidentally try to clean up after another instance.

• The manifest-based centroid directory (if used): The centroids stored in this directory are periodically updated.
During an update, if another instance tries to access any of the files in this directory, that instance could run
into errors.

 | System requirements for the Cylance Engine | 11

Installing and updating the Cylance Engine
You can install the Cylance Engine on a supported Linux distribution or Windows server.

Install the Cylance Engine on a Linux distribution
1. Download the appropriate Cylance Engine package for your Linux distribution.

• The installation package for CentOS, Fedora, and Red Hat Enterprise Linux (RHEL) distributions is an rpm
package (for example, SampleScore-<version>.rpm).

• The installation package for Debian and Ubuntu distributions is a deb package (for example,
samplescore_<version>_amd64.deb).

• If you want to install the Cylance Engine without a distribution package manager, the installation package is
a zip file (or example, Cylance.Engine-linux-x64-<version>.zip).

2. Do one of the following:

Task Steps

Install the Cylance Engine on
a CentOS, Fedora, or Red Hat
distribution.

In the command prompt, run the following command, where package is
the complete name of the rpm package.

rpm -ivh package

Install the Cylance Engine on a
Debian or Ubuntu distribution.

In the command prompt, run the following command, where package is
the complete name of the rpm package.

dpkg -i package

Install the Cylance Engine without
a distribution package manager.

The only requirement for the location of the files from the package is
that the log file path must point to a writable location.

Query the version of your Cylance Engine on a Linux distribution
To determine the currently installed version of the Cylance Engine, open the command prompt and run the
following command:

cat /opt/cylance/share/doc/samplescore/VERSION

This file may not exist in older versions of the Cylance Engine, in which case open the command prompt and run
one of the following commands:

• For a CentOS, Fedora, or Red Hat distribution:

rpm -qi SampleScore

• For a Debian or Ubuntu distribution:

dpkg -s samplescore

 | Installing and updating the Cylance Engine | 12

Update the version of your Cylance Engine on a Linux distribution
1. To update an older version of the Cylance Engine to a newer version, download the newer installation package

for your distribution.
2. Do one of the following:

Note: You can also update the Cylance Engine by first uninstalling the older version (see Remove the Cylance
Engine from a Linux distribution) and then installing the newer version (see Install the Cylance Engine on a
Linux distribution).

Task Steps

Update the Cylance Engine on
a CentOS, Fedora, or Red Hat
distribution.

In the command prompt, run the following command, where new-
package is the complete name of the rpm package.

rpm -U new-package

Update the Cylance Engine on a
Debian or Ubuntu distribution.

In the command prompt, run the following command, where new-
package is the complete name of the deb package.

dpkg -i new-package

Update the Cylance Engine
without a distribution package
manager.

The only requirement for the location of the files from the package is
that the log file path must point to a writable location.

Remove the Cylance Engine from a Linux distribution
To uninstall the Cylance Engine from a Linux distribution, do one of the following:

Task Steps

Uninstall the Cylance Engine from
a CentOS, Fedora, or Red Hat
distribution.

In the command prompt, run the following command:

rpm -e 'rpm -qa | grep -i samplescore'

Uninstall the Cylance Engine from
a Debian or Ubuntu distribution.

In the command prompt, run the following command:

dpkg -r samplescore

Install the Cylance Engine on a Windows distribution
1. Download the appropriate Cylance Engine package.

• To install the Cylance Engine with the MSI installer, the installation package is an msi package (for
example, Cylance.Engine.Service-<version>.msi).

 | Installing and updating the Cylance Engine | 13

• To install the Cylance Engine without an installer, the installation package is a zip file (for
example, Cylance.Engine-Win-x64-<version>.zip).

2. Do one of the following:

Task Steps

Install the Cylance Engine with
the MSI installer.

Run the MSI installer using an account with sufficient permissions to
install and start a system service.

Install the Cylance Engine without
an installer.

The only requirement for the location of the files from the package is
that the log file path must point to a writable location.

Query the version of your Cylance Engine on a Windows distribution
To determine the currently installed version of the Cylance Engine, go to the Add or Remove programs option in
the Windows settings.

Update the version of your Cylance Engine on a Windows distribution
1. To update an older version of the Cylance Engine to a newer version, download the newer installation package.
2. Do one of the following:

Task Steps

Update the Cylance Engine with
the MSI installer.

Run the MSI installer using an account with sufficient privileges to
install and start a system service.

Update the Cylance Engine
without an installer.

The only requirement for the location of the files from the package is
that the log file path must point to a writable location.

Remove the Cylance Engine from a Windows distribution
To uninstall the Cylance Engine, go to the Add or Remove programs option in the Windows settings.

 | Installing and updating the Cylance Engine | 14

File-scoring service
The Cylance Engine file-scoring service (CylanceTcpService) provides a method to score individual files and
archives.

Samplescored service script
The samplescored service script allows the user to start and stop the service using traditional service commands
in Linux.

The samplescored service script wraps access to the Cylance Engine, which analyzes a given file or archive and
returns a confidence score.

The root user can start and stop the samplescored service script using the following commands:

service samplescored start

service samplescored stop

service samplescored status

By default, the service startup scripts are configured to run the service as root. However, you can change this to
any account by editing the /opt/cylance/bin/start_daemon script to change the $SERVICE_USER to the
desired account.

Sentinel file
Each instance of Cylance Engine creates a sentinel file in the temporary directory that you can use to verify
whether the service is running, the protocol that is being used, and the TCP port that it is listening on.

The sentinel file is a zero-length file with the configured port as the name of the file. It is created after all
initialization is complete and right before the service starts listening for connections. The presence of the file
indicates that the service is running and ready for requests.

You can specify the location of this sentinel file with the CYLANCE_TCP_SERVICE_TEMP_PATH environment
variable. The path of the sentinel follows the pattern of:

$TEMP/Cylance/CylanceTcpService/$pid/$protocol/tcp/$port

where:

• $TEMP is the system default temporary directory or the directory specified by the
CYLANCE_TCP_SERVICE_TEMP_PATH environment variable.

• $pid is the process identifier for the instance of the service.
• $protocol is the identifier for the protocol. Currently, this can be bpv1 for the Infinity Daemon Protocol or

CERAv1 for the REST API.
• $port is the configured port on which this instance is waiting.

 | File-scoring service | 15

Environment variables
The Cylance Engine supports reading environment variables that control behavior before the configuration file is
loaded.

Variable Description

CYLANCE_TCP_SERVICE_TEMP

_PATH

This specifies the path where the sentinel file for the instance is created.
By default, the path is /tmp, but this can be redirected to another path
using this variable. The Cylance Engine automatically removes this file
when the service shuts down.

Command-line options for the Cylance Engine
The Cylance Engine uses a .ini configuration file to control its configuration (see Configuration file for the Cylance
Engine) but you can override certain options with command-line options.

Option Default setting in .ini configuration
file (Service section)

Description

-c ./CylanceTcpService.ini This option specifies the path to the configuration
file. This option is only required when running the
Cylance Engine in a different directory from where it
was installed.

The default location of the
CylanceTcpService.ini configuration file is /opt/
cylance/lib/samplescore .

-p Port=9002 This option specifies the port that this instance of the
Cylance Engine should listen on for connections. Any
port number greater than 1024 will work but the port
must not be occupied by another application.

If a port number is specified in the Service section
of the CylanceTcpService.ini configuration file, this
option overrides that value.

-s Shutdown=false This option enables the processing of the shutdown
command via the socket.

CAUTION: This option should not be enabled
for production environments.

-u DataFileUpdateInterval=10 This option specifies the interval, in seconds, between
checks to see whether the .ini configuration file
contains any updated settings. Only certain settings
in the configuration file are checked. For more
information, see the Service section in Configuration
file for the Cylance Engine.

 | File-scoring service | 16

Option Default setting in .ini configuration
file (Service section)

Description

-C MaxConcurrency=0 This option specifies the maximum number of files
that the Cylance Engine can process simultaneously.
The default value of 0 indicates that the concurrency
should be set to the number of detected CPU
cores. Setting this value higher than the number of
CPU cores could lead to poor system performance.

-P MaxPendingConnections=100 This option specifies the maximum number of
connections that can be pending (that is, not yet being
processed) before new connections are rejected.

-T ScoringTimeout=300 This option specifies the amount of time, in seconds,
to allow for scoring a single file. A non-zero value
indicates the time in seconds. Setting this value too
low may result in abort errors when scoring files,
especially archives.

-E All configured activities This option disables all activities specified in the
configuration file except for the list provided in
this command. In the .ini configuration file, the
activity names are specified by the name that follows
"Activity:". Multiple activities can be specified by using
a comma-separated list without spaces.

-D — This option disables the activity or activities specified
by the list provided in this command. In the .ini
configuration file, the activity names are specified by
the name that follows "Activity:". Multiple activities
can be specified by using a comma-separated list
without spaces.

--protocol Protocol=IDP This option specifies the protocol to run on the
listening port. The valid values are:

• InfinityDaemonProtocol or IDP: the legacy protocol
supported by TcpShim and InfinityTcpService, and
earlier versions of CylanceTcpService.

• REST: the newer Cylance RESTful API (CERA)
protocol

When using the Mono runtime, the default protocol is
IDP, whereas when running under the Microsoft .NET
Framework, the default protocol is REST.

--prometheus-
port

— This option specifies the port on which to serve the
Prometheus server.

The Cylance Engine has two additional options that control logging and that map to sections other than the
Service section:

• The option --console-log-level corresponds to the LogLevel setting in the ConsoleLog section.

 | File-scoring service | 17

• The option --file-log-level corresponds to the LogLevel setting in the FileLog section.

These options allow you to override temporarily the logging settings to help diagnose issues without having to
change the .ini configuration file.

All supported command-line options can always be queried using the -h or --help option.

The following invocation shows a command including options:

/opt/cylance/bin/CylanceTcpService -c CylanceTcpService.ini -p 9002 -u 30

When a given parameter is found both in the configuration file and on the command line, the command-line option
overrides the configuration file. This allows you to start multiple instances of the Cylance Engine on different
ports while sharing the same configuration file.

Configuration file for the Cylance Engine
The configuration file is a standard UTF-8 encoded text file that is broken into multiple sections.

• Each section name must be enclosed in square brackets ([]).
• Each section contains zero or more key/value pairs with the format key=value.
• Whitespace around the = sign is ignored, as are blank lines and trailing whitespace.
• You can add comments by starting a line with a # sign. The comment extends to the end of that line.

You can update certain entries in the .ini configuration file while the Cylance Engine is running. The
DataFileUpdateInterval setting determines how often the service checks for these changes. For most settings, you
must restart the service for the updated setting to take effect. Settings that you can update while the service is
running are indicated in their respective sections.

For settings that do not have a default value, a — symbol appears in default-value column in the tables.

The Service section controls general features and configuration controlling the service. You must restart the
service for updates to any of the settings in this section to take effect.

Key Default value Description

DataFileUpdateInterval0 This key specifies the interval, in seconds, between checks to see
whether the .ini configuration file contains any updated settings.

• A value of 0 disables checking whether any settings have
been updated.

• A value from 1 to 10 indicates the default interval of 10
seconds (that is, values less than 10 are treated as the
minimum of 10 seconds).

• A value greater than 10 is the interval in seconds.

ExternalClientEnable false When this value is false, the service restricts connections to the
local host only.

When this value is true, the service listens on all network
interfaces, allowing clients from other machines to connect to
the service.

 | File-scoring service | 18

Key Default value Description

IP 127.0.0.1 This key specifies the TCP port the Cylance Engine should
listen on when multiple ports are available. Setting the value to
0.0.0.0 listens on all interfaces, which is the same as setting
the ExternalClientEnable key to true.

MaxConcurrency 0 This key specifies the maximum number of files that the Cylance
Engine can process simultaneously. The default value of 0
indicates that the concurrency should be set to the number of
detected CPU cores. Setting this value higher than the number of
CPU cores could lead to poor system performance.

MaxPendingConnections100 This key specifies the maximum number of connections that
can be pending (that is, not yet being processed) before new
connections are rejected.

Port — This key specifies the port on which the TCP Service should
listen.

Protocol IDP for Mono;

REST for
Microsoft .NET 8.0

This key specifies the protocol to run on the listening port. The
valid values are:

• InfinityDaemonProtocol or IDP: the legacy protocol supported
by TcpShim, InfinityTcpService, and earlier versions of the
CylanceTcpService.

• REST: the newer Cylance RESTful API (CERA) protocol

Proxy — This key specifies a proxy server to use when making
any outgoing connections. The format of the proxy
specification is “http://proxy.com:port”, or “http://
username:password@proxy.com:port” if a username and
password are required. The HTTPS protocol can be used as well.
When using a username and password, you must escape any
special characters used in the URL notation (for example, /, :, @,
and so on), according to the HTTP specification.

ScoringTimeout 0 This key specifies the amount of time, in seconds, to allow for
scoring a single file. The default (0) indicates 300 seconds (5
minutes). A non-zero value indicates the time in seconds. Setting
this value too low may result in abort errors when scoring files,
especially archives.

ShutdownCommand false This key specifies whether the Cylance Engine should honor the
shutdown command (s) or not. The default value of false ignores
the shutdown command.

When Protocol=REST, you can configure additional settings in the Service section to control secure connections.

 | File-scoring service | 19

Key Default value Description

HttpsEnable false When this value is false, the service does not enable HTTPS
connections.

When this value is true, the service enables HTTPS connections.
When they are enabled, you must configure the TlsPort,
TlsCertPath, and TlsCertPassword settings.

TlsPort — This key specifies the port for secure connections, that is, for
clients that connect to the REST API via HTTPS. The Port setting
is for insecure connections via HTTP only.

TlsCertPath — This key specifies the path to a file containing the TLS certificate
in Persona Information Exchange (.pfx) format. This is a standard
X.509 certificate that contains both the public and private key.

TlsCertPassword — This key specifies the password to use for the PFX TLS
certificate.

ClientCertRequired false When this value is false, client certificates are not validated.

When this value is true, client certificates are validated that they
are signed by the certificate specified by TlsCertPath. Clients that
cannot present a correctly signed certificate are denied access.

CacheSize 1024 This key specifies the maximum number of validated certificates
to cache.

CacheEntryExpiration 1 This key specifies the expiration time, in hours, for validated
certificates in the cache. Once this time has elapsed, the client
certificate must be revalidated on connection.

The AllowedRestrictedHashList section indicates where the allowed and restricted SHA256 list can be located.
The file path is checked for changes according to the DataFileUpdateInterval setting in the Service section.

Key Default value Description

FilePath — This key specifies the path to a file containing the allowed and
restricted hash list JSON entries. For the format of this file, see
Infinity Public Data API.

The ConsoleLog section controls the logging of the Cylance Engine to the console. You must restart the service
for updates to any of the settings in this section to take effect.

 | File-scoring service | 20

Key Default value Description

LogLevel — This key specifies the verbosity of the console log. The valid
values are

• None — this value disables console logging
• Error
• Warning
• Info
• Debug
• Verbose

It is not recommended to set the level higher than necessary
because it can produce a lot of output, but may be able to help
diagnose an issue if there are problems.

LogTag false This key specifies whether tagging information should be
included with each message. When false, specifies that no
tagging information should be included; when true, indicates that
the module name space and message hash will be included with
each message.

The tag represents the particular subsystem that produced the
message. For most messages, this information is not important
and you can disable the setting to reduce the size of the log file.

TimeStamp off This key specifies the format of the time stamp included with
each message. The default value of off indicates that no time
stamp should be included. Other valid values are:

• Off, which indicates that no time stamp should be included
• Local, which prints the local time in ISO 8601 format
• UTC, which prints the UTC time in ISO 8601 format
• Simple, which prints a simple, non-ISO 8601 time stamp

The FileLog section controls the logging of the Cylance Engine to a file. The FileLog section supports the same
settings as the ConsoleLog section, and the following additional setting. You must restart the service for updates
to any of the settings in this section to take effect.

Note: Because the console logging and file logging are separate sections within the configuration file, you can
configure the settings for each section with different values.

Key Default value Description

FilePath — This key specifies the path to the file in which to log the
messages. Relative paths are relative to the location of the .ini
configuration file.

The Syslog section controls the syslog configuration. You must restart the service for updates to any of the
settings in this section to take effect.

 | File-scoring service | 21

Key Default value Description

Host — When specified, logging to a system logger (syslog) is enabled
and this setting specifies the host name of the service. The
default is to leave this setting blank and not log to a syslog
server.

Port 514 This key specifies the port on which the syslog service is running.
For most systems, the default is 514, but you can specify a
different port for non-standard configurations.

Protocol RFC5424 This key specifies the protocol to use when communicating with
the syslog service. The default protocol is RFC5424, but for older
services, RFC3164 is supported as well.

Facility Security This key specifies the syslog facility that you log any messages
under. The valid values are:

• Kernel
• User
• Mail
• System
• Security
• Internal
• Printer
• News
• UUCP
• Clock
• Security2
• Ftp
• Ntp
• Audit
• Alert
• Clock2
• Local0
• Local1
• Local2
• Local3
• Local4
• Local5

 | File-scoring service | 22

Key Default value Description

MalwareSeverity Alert This key controls the syslog level at which malware notifications
are sent. The valid values are:

• Emergency
• Alert
• Critical
• Error
• Warning
• Notice
• Informational
• Debug

SeverityFilter Warning This key controls which messages get logged with the syslog
service. Any message with a lower priority is logged. The valid
values are:

• Error
• Warning
• Info

ScoreThreshold 0.0 This key specifies the threshold at which the score is considered
malware. Everything equal to or less than this value results in a
syslog malware notification. The range of valid values is +1.0 to
-1.0.

The CloudScoring section controls whether scores for files should be retrieved from the Cylance Infinity Cloud
or only calculated locally. You must restart the service for updates to any of the settings in this section to take
effect.

Key Default value Description

Enabled false When this value is false, the service disables the retrieval of cloud
scores.

When this value is true, the service enables the retrieval of cloud
scores. If you enable setting, you must also specify an API key via
the ApiKey setting.

ApiKey This is the Cylance Infinity Cloud API key to use for cloud-
scoring requests. This must be a 32-character, all upper-case,
hexadecimal number. API keys are assigned per customer.
Contact your BlackBerry representative if you need an API key

RequestTimeoutMs — This key specifies the time, in milliseconds, to wait for a response
from the cloud. Normally, responses are very quick (within
hundreds of milliseconds) but they can take longer depending on
network conditions.

 | File-scoring service | 23

The ManifestCentroidUpdate section controls the retrieval and loading of the new manifest-based centroids,
which allows the service to fetch only the centroids that it does not already have. You must restart the service for
updates to any of the settings in this section to take effect.

Key Default value Description

Enabled false When this value is false, the service disables the retrieval
of new centroids.

When this value is true, the service enables the retrieval
of new centroids.

CentroidUpdateIntervalHours 48 This key specifies the interval, in hours, between checks for
new centroids.

DirectoryPath — This key specifies the directory in which to store the
downloaded centroids. The default is to store them under
an appropriate local application data folder on the system.

The Cache section controls the internal caching of scores to avoid rescoring commonly seen files. You must
restart the service for updates to any of the settings in this section to take effect.

Key Default value Description

CacheSizeMB — This key specifies the amount of memory, in MB, to use for the
cache. When score caching is enabled, the minimum value is
1MB. While there is no upper limit to the size, large caches are
not recommended because this memory is exclusively reserved
for the cache.

Enabled false When this value is false, the service disables score caching.

When this value is true, the service enables score caching.

RedisHost — This key specifies the URL of the Redis server to use for caching,
instead of the in-memory score cache. When this setting is a
valid URL (using the format redis://host:port/), the internal cache
is disabled and the CacheSizeMB key is ignored.

Scores that are stored in the Redis cache still honor
the TimeToLive key, which is enforced by the Redis server and
not the Cylance Engine. You should configure multiple instances
of the Cylance Engine to use the same Redis server to share the
score caching among them.

 | File-scoring service | 24

Key Default value Description

TimeToLive — This key specifies the length of time, in hours, for which any
cache entry is kept in the cache. The minimum is 1 hour but
this value can be increased to allow entries to live longer. For
the local cache (not Redis), cache entries are not automatically
expunged when they exceed their time to live, but they may be
evicted any time after this period, depending on the need for
space in the cache.

This setting does not have an inherent maximum value, but we
recommend that the TimeToLive value not be set too high when
cloud scoring is enabled to get updated values from the cloud.

The activity sections control which activity classes are loaded. Each section must have a unique name and start
with "Activity:". Although the name does not matter, it is recommended that scoring activities start with "Score-"
and explaining activities start with "Explain-" (for example, "Score-PE" and "Explain-PE"). Apart from the amount of
available memory, there is no limit for the number of configured activities. Multiple generations of a single model
(for example, PE) can be specified if the activity name is unique, such as Score-PE4 and Score-PE6.

The activities support a number of settings but not all are valid for each type of activity. Note that, in the activity
sections, only the Centroids setting is checked for changes according to the DataFileUpdateInterval setting in
the Service section.

Key Description

AssemblyPath This key applies to scoring, explaining, and archive activities. This is the
path, relative to the .ini configuration file, to the assembly for the activity.

EnsemblePath This key applies to scoring and archive activities only. This is the
path, relative to the .ini configuration file, to the ensemble for the activity.

Centroids This key applies to scoring activities only. This is an optional path to a
file containing centroids to load into the model. Centroids do not have to
be separated by model; each scoring activity loads only the appropriate
centroids from the specified file. Therefore, all centroid settings can
point to the same file; this is the recommended setup.

In the activity sections, only the Centroids setting is checked for changes
according to the DataFileUpdateInterval setting in the Service section.

MaxNestedFileDepth This key applies to the archive activity only. When the service is
processing archives, this value controls how many levels of nesting of
archives to examine before giving up. A value of 1 examines the top-level
archive entries but no archives inside. Setting this value too high may
result in the scoring operation aborting due to a timeout, or the process
hanging if the archive is malformed.

Passwords This key applies to the archive activity only. This is an optional, comma-
separated list of default passwords to try on password-protected
archives. These are tried after any passwords that are passed via the
Score or Explain commands.

 | File-scoring service | 25

Key Description

TempArchiveDirectory This key applies to the archive activity only. When processing archives,
if this setting is present, the value is a temporary disk location in which
you can extract the contents of the archive for processing. By default,
archives are processed entirely in memory. Using this setting can reduce
the amount of memory used for archive processing at the expense of
additional disk space usage and processing time.

The following is an example of each activity:

...

[Activity:Score-PE]
AssemblyPath=Cylance.Model.SS3PE6.dll
EnsemblePath=Ensemble-20180813-S3V8-PE6.cym
Centroids=Centroids.cyb

[Activity:Explain-PE]
AssemblyPath=SampleExplainPE.dll

[Activity:Score-ARC]
AssemblyPath=Cylance.Model.ARC.dll
EnsemblePath=Ensemble-20190319-S0V5-ARC.cym
MaxNestedFileDepth=3
Passwords=abc123,clean,dirty

...

The Activity:Score-ARC name is not special. The Cylance.Model.ARC.dll assembly defines this as being an archive
activity. Only Cylance.Model.ARC.dll understands the MaxNestedFileDepth and Passwords settings. If these
settings are present in any other section, the service ignores them.

Note: The Archive section is no longer supported and has been replaced with Activity:Score-ARC.

The Prometheus section allows you to enable whether you want to use a Prometheus server to scrape metrics
data from the Cylance Engineperiodically, and the port to listen on for scrape requests. For more information
about how Prometheus works with the Cylance Engine, see Appendix: Prometheus monitoring support.

Key Default Description

Enabled false This key specifies whether to use a Prometheus
server to scrape metrics data. When enabled, the
service listens on the TCP port that you specify
using the Port key, or the port specified using the
--prometheus-port command-line option (see
Command-line options for the Cylance Engine).

Port 9009 This key specifies the port to listen on for scrape
requests.

 | File-scoring service | 26

File-scoring service protocols
The Cylance Engine file-scoring service supports three protocols:

• A REST-based API called the Cylance Engine RESTful API (CERA), based on standard HTTP and HTTPS
connections using JSON for both requests and responses. This protocol was introduced in Cylance Engine
v0.11. Note that CERA is not available in Mono-based packages.

• An Internet Content Adaptation Protocol (ICAP) service, based on the ICAP protocol (rfc3507). The service is
situated between an ICAP client and the file-scoring service using the CERA. For documentation, see the ICAP
service package that is downloaded separately.

• The legacy Infinity Daemon Protocol (IDP), also known as the CylanceTcpService Protocol, is the proprietary
binary protocol supported by TcpShim, InfinityTcpService, and CylanceTcpService.

To use the service with this protocol, a TCP connection must be established with the server. The service
can be configured to listen on any valid TCP port number (1024 - 65535). Port 9002 is the default port
in InfinityDaemonClient, samplescored, samplescore, and ttmstatic. The port used by the service can be
customized using the configuration file or the p or --port command-line option.

For more information, see Appendix: CylanceTcpService Protocol.

The protocols serve as a bridge between client code and Cylance Engine activities, acting as a generic service,
providing the infrastructure to process files and hand the results back to the client.

Cylance RESTful API
The Cylance RESTful API (CERA) protocol uses standard HTTP or HTTPS for sending commands and receiving
the responses. The curl utility can be used to score or retrieve threat indicators for files. In addition, cera-client is
an example CERA client that uses the Python requests library. Cera-client provides a convenient command-line
interface for scoring or explaining directories of files with a controllable degree of parallelism.

The default protocol is the Infinity Daemon Protocol. To use the CERA protocol, you must enable the Infinity
Daemon Protocol in the CylanceTcpService.ini configuration file or via a command-line option. On the command
line, the --protocol option specifies which protocol to use for this invocation only. The valid values are:

• 'InfinityDaemonClient' or 'IDP': enables the default Infinity Daemon Protocol.
• 'CylanceEngineRestApi', 'CERA', or 'REST': enables the new RESTful API (Microsoft .NET 5.0 or later only).

The entries are not case-sensitive (for example, 'CERA', 'cera', and 'Cera' are all treated the same).

Similarly, the protocol can be specified in the CylanceTcpService.ini configuration file:

[Service]
Protocol=REST

This example makes the REST protocol the default for all invocations unless it is overridden via the --protocol
command-line option. The options for this setting are the same as the options described above for the --
protocol command-line option.

The port setting in the .ini configuration file and the --port option specify the port that the Cylance Engine lists
for incoming REST connections via HTTP only. Another option allows for HTTPS connections when the service
is properly configured. In the examples below, curl is being run on the same machine with the default TCP port
(9002) so all connections are to localhost:9002 or 127.0.0.1:9002.

 | File-scoring service protocols | 27

https://datatracker.ietf.org/doc/rfc3507/
https://curl.se/
https://docs.python-requests.org

Getting model details
To retrieve information about the currently loaded models, in the command prompt, run the following command:

GET /apiv1/models/

The response is a JSON object with the details for all loaded models. The exact list of models may be different
depending on how the service is configured and the exact version of the Cylance Engine.

The following example uses curl with the Cylance Engine running on the default port 9002.

Note: For brevity, some curl output has been removed and a JSON pretty-printer has been applied to make the
JSON easier to read. By default, curl prints the JSON raw, which is difficult to read.

$ curl http://localhost:9002/apiv1/models/
{
 "Status": "OK",
 "Models":
 [
 {
 "Banner": "...",
 "ModelVersion": 131975059429967678,
 "SampleFormat": "ARC",
 "Generation": 1,
 "SubGeneration": "A",
 "EnsembleVersion": 5,
 "CentroidHash": 0
 },
 {
 "Banner": "...",
 "ModelVersion": "131774598312539083",
 "SampleFormat": "ELF",
 "Generation": 2,
 "SubGeneration": "A",
 "EnsembleVersion": 6,
 "CentroidHash": "3979322740683475419"
 },
 {
 "Banner": "...",
 "ModelVersion": 132713821343850774,
 "SampleFormat": "MO",
 "Generation": 3,
 "SubGeneration": "A",
 "EnsembleVersion": 2,
 "CentroidHash": "7085422129475707133"
 },
 {
 "Banner": "...",
 "ModelVersion": "132624646650794342",
 "SampleFormat": "MOFAT",
 "Generation": 1,
 "SubGeneration": "A",
 "EnsembleVersion": 1,
 "CentroidHash": 0
 },
 {
 "Banner": "...",
 "ModelVersion": "131764252418431270",
 "SampleFormat": "OLE",
 "Generation": 3,

 | File-scoring service protocols | 28

 "SubGeneration": "A",
 "EnsembleVersion": 2,
 "CentroidHash": 0
 },
 {
 "Banner": "...",
 "ModelVersion": "131764272845001270",
 "SampleFormat": "OOXML",
 "Generation": 3,
 "SubGeneration": "A",
 "EnsembleVersion": 3,
 "CentroidHash": 0
 },
 {
 "Banner": "...",
 "ModelVersion": "132253137167261698",
 "SampleFormat": "PDF",
 "Generation": 3,
 "SubGeneration": "A",
 "EnsembleVersion": 3,
 "CentroidHash": 0
 },
 {
 "Banner": "...",
 "ModelVersion": "131786662583688997",
 "SampleFormat": "PE",
 "Generation": 6,
 "SubGeneration": "A",
 "EnsembleVersion": 9,
 "CentroidHash": "1359238976895146529"
 }
]
}

In this example, the Banner lines have been truncated because they return long strings. Each object has the
following keys:

Key Type Description

Banner string This is the banner string from the ensemble containing the model
release date and copyright information.

ModelVersion string This is the version number of this model. This number can be
used to access centroids for the model.

SampleFormat string This is the format of the file accepted by the model (for example,
"PE" or "MO").

Generation number This is the generation number of the model.

SubGeneration string This is the sub-generation of the model.

EnsembleVersion number This is the version of the ensemble. The version is incremented
when new content is added (for example, when the default set of
centroids is updated).

 | File-scoring service protocols | 29

Key Type Description

CentroidHash string This is a 64-bit hash identifier for the set of centroids loaded into
the model. A value of 0 means it has no centroids. Because this
is a hash value, it can only be used to see if the set is different,
but comparing two centroids' hashes does not indicate which set
is newer.

You can retrieve information on a specific model by including the model version. In this example, only one model
is returned.

GET /apiv1/models?ver=132253137167261698

You can also retrieve information for multiple models. In this second example, because you are requesting two
models, the resulting JSON contains exactly two JSON objects.

GET /apiv1/models?ver=132253137167261698&ver=131786662583688997

Scoring a file
To score a file, the REST API uses the HTTP PUT method; the POST method is not supported. The file can be
provided by:

• A file path: The full path to the file that is visible to the Cylance Engine. The file path is passed via a small block
of JSON. Note that this is the only way to specify a file to score using the Infinity Daemon Protocol.

• A binary: Since the PUT method allows transfer of binary data, the file can be directly transferred to the TCP
Service via the HTTP(S) connection. Because the Cylance Engine supports multiple compression formats,
files can be compressed in order to reduce transmission bandwidth.

When scoring by file path, the client posts a JSON object with the file path to the Cylance Engine:

PUT /apiv1/score
Content-Type: application/json
Content-Length: 36

{
 "FilePath": "/tmp/infinityd.exe"
}

In Cylance Engine 1.2 and later, you can score multiple files in a single request using both JSON and MIME
multipart:

PUT /apiv1/score
Content-Type: application/json
Content-Length: 70

{
 "FilePaths": ["C:/tmp/sample1.exe", "C:/tmp/sample2.exe"]
}

If the body is not valid JSON, a 400 Bad Request error is returned. For a 200 OK response, a block of JSON is
returned that represents the scoring result. When scoring multiple files, an array of results are returned.

[
 {

 | File-scoring service protocols | 30

 "Status": "OK",
 "SamplePath": "C:/tmp/sample1.exe",
 "AggregateScore": 1.0,
 "Sha256":
 "5AE1246EAADE01C5840338850D7B35BF70243FC13A8E006642445DB08CB42A50",
 "MaxDepthExceeded": false,
 "SampleFormatUnknown": false,
 "Scores": [
 {
 "Score": 1.0,
 "Determinant": "MODEL",
 "SampleFormat": "PE",
 "ModelVersion": 133368370684345704,
 "Source": "LOCAL_ENDPOINT",
 "Classifier": "ML",
 "ParseStatus": "OK",
 "CentroidHash": "0"
 }
]
 },
 {
 "Status": "OK",
 "SamplePath": "C:/tmp/sample2.exe",
 "AggregateScore": 1.0,
 "Sha256":
 "7E668791A2089E7CB82B09D4574B63DCE1B13DA7278E5F98075F4A070C09AB6D",
 "MaxDepthExceeded": false,
 "SampleFormatUnknown": false,
 "Scores": [
 {
 "Score": 1.0,
 "Determinant": "MODEL",
 "SampleFormat": "PE",
 "ModelVersion": 133368370684345704,
 "Source": "LOCAL_ENDPOINT",
 "Classifier": "ML",
 "ParseStatus": "OK",
 "CentroidHash": "0"
 }
]
 }
]

The keys of the scoring-result object are:

Key Description

Status This indicates the status of the operation.

• If the file scored successfully, OK is returned.
• If an error occurs, a message describing the error is returned.

This field is present only in top-level scoring-result objects; it is omitted for any
objects in the Children field.

 | File-scoring service protocols | 31

Key Description

AggregateScore If the file produced a single result, this is the aggregate score. If the file produced
multiple results (for example if the file is an archive), the aggregate score is the
lowest score produced among all of the files.

This field may be interpreted as the overall score for the file but the individual
scores are also available for inspection. Non-scores such as 'NaN' are filtered out
before finding the lowest score so that nested files that could not be processed do
not corrupt valid results.

MaxDepthExceeded When scoring an archive, a value of true indicates that the entire archive was not
explored because the nesting level was higher than the configured maximum. This
means that only a partial result has been returned. A value of false indicates that
the entire archive has been examined and all results are available.

SampleFormatUnknown When the value for this key is true, the file could not be scored by any models that
are currently loaded. This normally occurs because the file is not of a supported
type.

Scores This is the list of one or more scores for the file. In most cases, there is only one
score unless the file was scored by multiple models.

Children This is the list of child scoring results for this file. This key is normally seen
only when scoring an archive or a MOFAT file. When present, it contains the list
of scoring-result objects for any files inside the archive. If one of those file is
also an archive, it too has child scoring results until the configured maximum
nested depth is reached.

SamplePath This is the file’s path.

• When scoring by filepath, this is equivalent to the request’s FilePath.
• When scoring using binary data, this is equal to the SHA256 of the file.

For child scoring results (for example, in the case of files within an archive),
the child’s relative file path (that is, its path within an archive) is prefixed with a
pipe and appended to the parent SamplePath (for example: archive.zip|path/to/
sample.exe).

Each scoring result contains the following information:

Key Description

Score This is the score for the file.

• If an error is generated (the value in the Determinant field is PARSER, CONFIG,
or ABORT), this field contains NaN (not a number).

• If the value in the Determinant field is WHITECENTROID or WHITELIST, this
field is always +1.0.

• If the value in the Determinant field is BLACKCENTROID or BLACKLIST, this
field is always -1.0.

 | File-scoring service protocols | 32

Key Description

Determinant This specifies where the results were obtained from.

• MODEL indicates that the score was calculated by the machine-learning model.
• BLACKCENTROID and WHITECENTROID indicate that a centroid was hit and

the score was changed accordingly.
• BLACKLIST and WHITELIST indicate that the file hash was explicitly disallowed

(that is, appeared in the restricted list) or allowed (that is, appeared in
the approved list).

• PARSER specifies an error while parsing the file.
• ABORT means that the file was aborted before processing was completed

because the scoring took longer than the timeout period to complete.
• CONFIG indicates that the maximum nested depth was exceeded when

processing an archive based on a setting from the CylanceTcpService.ini
configuration file.

SampleFormat This is the type of file that was scored.

ModelVersion This is the version of the model that produced the score. Because JSON does not
handle 64-bit integers well, the version is returned as a string.

Source This specifies the source of the score. The values can be:

• LOCAL_ENDPOINT if the score was calculated locally
• INFINITY_CLOUD if the score came from the Infinity Cloud Service

ParseStatus This is the status of the parsing of the file. An OK status indicates that the file was
parsed successfully. If the status is not OK, two additional fields, StatusCause and
CauseMessage, are included to provide more information about why the file could
not be parsed.

Classifier This further classifies where the score was obtained from. The most common
value is ML, indicating that the machine-learning model calculated the score. Other
valid values:

• INFINITY_GENERALSCORE indicates that the score came from a scoring
operation in the Infinity Cloud Service.

• HUMAN indicates that the score came from human analysis of the file.
• INDUSTRY indicates that the score came from a third-party source.

When using a binary rather than a path, the request looks like:

PUT /apiv1/score
Content-Type: application/octet-stream
Content-Length: <length>

<binary data>

In this case, the Content-Type can be any type except for application/json, which indicates that a file path
has been provided. The most generic is application/octet-stream, but others such as application/
gzip can also be used.

 | File-scoring service protocols | 33

For scoring multiple files as binary, the Content-Type is multipart/form-data; boundary=something.
Both binary and JSON requests can be made in the multipart form, but each section must have the correct
Content-Type (application/json or application/octet-stream). Nested multipart forms are not
supported.

The output of an archive is hierarchical:

$ curl -X PUT -T test.tar http://localhost:9002/apiv1/score
{
 "Status": "OK",
 "SamplePath":
 "5D6D21AB0283E17643B64E856D07ACFEBD6FC52EB4B50AFD3CE6891A2A36ECBE",
 "AggregateScore": 1.0,
 "Sha256": "5D6D21AB0283E17643B64E856D07ACFEBD6FC52EB4B50AFD3CE6891A2A36ECBE",
 "MaxDepthExceeded": false,
 "SampleFormatUnknown": false,
 "Scores": [
 {
 "Score": 1.0,
 "Determinant": "MODEL",
 "SampleFormat": "ARC",
 "ModelVersion": "131975059429967680",
 "Source": "LOCAL_ENDPOINT",
 "Classifier": "ML",
 "ParseStatus": "OK"
 "CentroidHash": "0"
 }
],
 "Children": [
 {
 "SamplePath":
 "5D6D21AB0283E17643B64E856D07ACFEBD6FC52EB4B50AFD3CE6891A2A36ECBE|
CommonUtils.dll",
 "AggregateScore": 1.0,
 "Sha256":
 "7F3FD0F31FA0C6C840D917567670DA3B4A01EF7D64826E7326DEE8B32454296D",
 "MaxDepthExceeded": false,
 "SampleFormatUnknown": false,
 "Scores": [
 {
 "Score": 1.0,
 "Determinant": "MODEL",
 "SampleFormat": "PE",
 "ModelVersion": "131786662583689000",
 "Source": "LOCAL_ENDPOINT",
 "Classifier": "ML",
 "ParseStatus": "OK"
 "CentroidHash": "1359238976895146529"
 }
]
 },
 {
 "SamplePath":
 "5D6D21AB0283E17643B64E856D07ACFEBD6FC52EB4B50AFD3CE6891A2A36ECBE|infinityd.exe",
 "AggregateScore": 1.0,
 "Sha256":
 "5AE1246EAADE01C5840338850D7B35BF70243FC13A8E006642445DB08CB42A50",
 "MaxDepthExceeded": false,
 "SampleFormatUnknown": false,
 "Scores": [

 | File-scoring service protocols | 34

 {
 "Score": 1.0,
 "Determinant": "MODEL",
 "SampleFormat": "PE",
 "ModelVersion": "131786662583689000",
 "Source": "LOCAL_ENDPOINT",
 "Classifier": "ML",
 "ParseStatus": "OK"
 "CentroidHash": "1359238976895146529"
 }
]
 },
 {
 "SamplePath":
 "5D6D21AB0283E17643B64E856D07ACFEBD6FC52EB4B50AFD3CE6891A2A36ECBE|
InfinityDotNet.dll",
 "AggregateScore": 1.0,
 "Sha256":
 "F0A7274835C6D32064ED1D1F09104E881F17ACF544A1ECDF2C430D30D9781EA4",
 "MaxDepthExceeded": false,
 "SampleFormatUnknown": false,
 "Scores": [
 {
 "Score": 1.0,
 "Determinant": "MODEL",
 "SampleFormat": "PE",
 "ModelVersion": "131786662583689000",
 "Source": "LOCAL_ENDPOINT",
 "Classifier": "ML",
 "ParseStatus": "OK"
 "CentroidHash": "1359238976895146529"
 }
]
 },
 {
 "SamplePath":
 "5D6D21AB0283E17643B64E856D07ACFEBD6FC52EB4B50AFD3CE6891A2A36ECBE|
infinitydt.exe",
 "AggregateScore": 1.0,
 "Sha256":
 "19F30312D933256BD983DFC6F120F0521D7C97EFB62CB31C5C286F12E4F3C801",
 "MaxDepthExceeded": false,
 "SampleFormatUnknown": false,
 "Scores": [
 {
 "Score": 1.0,
 "Determinant": "MODEL",
 "SampleFormat": "PE",
 "ModelVersion": "131786662583689000",
 "Source": "LOCAL_ENDPOINT",
 "Classifier": "ML",
 "ParseStatus": "OK"
 "CentroidHash": "1359238976895146529"
 }
]
 },
 {
 "SamplePath":
 "5D6D21AB0283E17643B64E856D07ACFEBD6FC52EB4B50AFD3CE6891A2A36ECBE|
InstallerIDCore.dll",
 "AggregateScore": 1.0,

 | File-scoring service protocols | 35

 "Sha256":
 "40A3BD9E62336C60DAB2F43E81B8F708882D799D7FAE96746B047B036A3F47F1",
 "MaxDepthExceeded": false,
 "SampleFormatUnknown": false,
 "Scores": [
 {
 "Score": 1.0,
 "Determinant": "MODEL",
 "SampleFormat": "PE",
 "ModelVersion": "131786662583689000",
 "Source": "LOCAL_ENDPOINT",
 "Classifier": "ML",
 "ParseStatus": "OK"
 "CentroidHash": "1359238976895146529"
 }
]
 }
]
}

The archive test.tar contains five PE files. The top-level aggregate score is the overall score for the archive. In this
example, all the files in the archive are benign, but if they were not, the aggregate score would be the lowest of the
all the children.

Each file in the hierarchy gets an aggregate score and a list of individual scores. The reason for this is that any
file may be an archive that itself contains multiple files. At each level of the hierarchy, the aggregate score gives a
quick overview of that entire file tree.

Explaining the score for a file
To explain the score for a file, the REST API uses the HTTP PUT method. Like scoring, the file can be provided
by a file path or binary. When explaining by file path, the client posts a JSON object with the file path to the TCP
service:

PUT /apiv1/explain
Content-Type: application/json
Content-Length: 36

{
 "FilePath": "/tmp/sample.exe"
}

In Cylance Engine 1.2 and later, you can score multiple files in a single request:

PUT /apiv1/explain
Content-Type: application/json
Content-Length: 70

{
 "FilePaths": ["C:/tmp/sample1.exe", "C:/tmp/sample2.exe"]
}

When using a binary rather than a path, the request looks like:

PUT /apiv1/explain
Content-Type: application/octet-stream
Content-Length: <length>

 | File-scoring service protocols | 36

<binary data>

A block of JSON is returned that represents the explaining result. When scoring multiple files, an array of results
are returned.

curl -X PUT -T PEParser.dll http://localhost:9002/apiv1/explain
{
 "Status": "OK",
 "Explain": [
 {
 "TTM": {
 "features": {
 "Deception": {
 "ServiceDLL": true,
 "UsesCompression": true
 },
 "Misc": {
 "PrivEscalationCryptBase": true
 }
 },
 "scores": {
 "Destruction": 0,
 "Deception": 8,
 "Collection": 0,
 "DataLoss": 0,
 "Anomalies": 0,
 "Misc": 20,
 "Extended": 0
 }
 },
 "SampleFormat": "PE",
 "SamplePath":
 "D476484BD9E26928DCC740CCEB4B82C95FB5098BEDED638EF12F692BC8EE945E"
 }
]
}

The output of an explain operation is similar to that returned by the InfinityDaemonClient utility but the output
differs in a few ways:

• The entire output is valid JSON. The Infinity Daemon Client returns pseudo-JSON with some additional, non-
JSON elements.

• The Status field indicates the status of the operation. Normally this is OK, meaning the operation completed
successfully. If the field displays any other value, it is a message with an indication of what went wrong with
the request.

• The Explain field contains the JSON for the explanation in a format similar to the Infinity Daemon Client.
• The Explain field contains an additional SamplePath element. If the path of the file is known, it is returned

in this field. If the path is not known, this field contains the SHA256 hash of the item. In the example above,
because the file was submitted as part of the explain request, the original file name was not known and
therefore the hash is provided.

Shutting down the service
By default, the Cylance Engine does not allow shutdown requests. If the Cylance Engine is configured to allow
shutdown requests, the client may request that it be shut down:

PUT /apiv1/shutdown

 | File-scoring service protocols | 37

Content-Length: 0

You do not need to include any data with the request; if any data is supplied, it is ignored. However, the Content-
Length header must be present or the server rejects the request.

• If shutdown is not allowed (Shutdown=false in the configuration file), a 401 Unauthorized result is returned.
• If shutdown is allowed (Shutdown=true in the configuration file or if the service was started with the --

shutdown option), a 200 OK is returned with no data.

Password-protected archives
The Cylance Engine supports the most popular archive formats via the score and explain APIs. For archives that
require a password, the password must be passed to the Cylance Engine for extraction.

You can specify passwords in the activity sections of the Configuration file for the Cylance Engine or pass them
as part of the API URI. When passing via the URI, the syntax is the same as described in Passwords specified for
archives:

PUT /apiv1/score?pw=foo
Content-Type: application/octet-stream
Content-Lenth: <length>

<binary data>

If the archive cannot be opened with the given passwords or with the passwords in the configuration file, an error
is returned.

 | File-scoring service protocols | 38

Appendix: Cylance Infinity Data Service
The Cylance Infinity service provides a set of RESTful APIs to download centroids or the restricted and allowed list
of file hashes to apply to the Cylance Engine. For more information, see Use of centroids in the Cylance Engine
and Restricted and allowed list of file hashes.

The base URL of the Infinity Public Data API is https://inf-data.cylance.com/apiv2/.

Authentication of requests
All requests require authentication in the form of an X-IAUTH header in all HTTP requests. This is an API key
granted via license. If you have any questions about the API key, contact BlackBerry customer support.

Format of the API key code

The API key code must be a 32-character hexadecimal (0-9, A-F) key, with all letters in uppercase. Using
lowercase letters results in the request being denied with a 401 (Unauthorized) response.

Example

GET /apiv2/centroids HTTP/1.0
Host: inf-data.cylance.com
X-IAUTH: 1234567890ABCDEF1234567890ABCDEF

Response status codes
Each API request receives a response with a JSON payload and a standard HTTP status code. In any case other
than a status code 200 (OK), the JSON payload provides additional detail regarding the error.

Code Description

200 (OK) This code indicates a successful call and operation. The response payload is
JSON, structured according to the nature of the request.

204 (No content) This code indicates a successful call and operation. There are no centroids for the
model specified with the model=<num>. Models with zero centroids and unknown
models both return this result.

400 (Bad request) This code indicates that there was a problem with the structure of the request or
its payload. If the failure can be determined, the response payload identifies the
failure in the request. A common cause of this type of error is malformed JSON in
the request body or an incorrect URL parameter.

401 (Unauthorized) This code indicates that there was was a problem with the authentication. Either
the request does not provide an authentication key, or the authentication key is
malformed or not found.

 | Appendix: Cylance Infinity Data Service | 39

Code Description

404 (Not found) This code indicates that a request was made for a resource that does not exist.
This most commonly occurs with an improperly formed request URL or an invalid
API key.

500 (Internal server error) This is a catch-all code for any unhandled errors that have occurred on the
server. If you encounter this error code, contact BlackBerry customer support.

501 (Not implemented) This code indicates that a request was made against a resource with an operation
that has not been implemented yet. Such operations should be identified
accordingly in this documentation.

503 (Service unavailable) This code indicates that the server is having issues completing the requests. The
client should try again later.

Service endpoints
The following service endpoints are supported by the API.

Centroids endpoint
The centroids endpoint allows clients to get the latest restricted and allowed centroids available.

Request

Item Description

URL GET /centroids

Parameters format (string, optional): The content format can only be JSON or proto. The
default is proto.

model (int, optional): The specific model of the centroid. The value must be a valid
model ID. If a value is not given, the result is centroids for all of the models. If the
model has no centroids or the model ID is invalid, a 204 (No Content) response is
returned.

Examples GET /centroids?format=proto&model=131308214743030001

GET /centroids?format=json&model=131308214743030001

Headers For format=json, it is recommended that you pass the Accept-Encoding:
gzip header to compress the centroids.

For format=proto, the centroids are already compressed using LZMA
compression; specifying the Accept-Encoding: gzip header does not further
compress the content.

Response

A successful response returns status code 200 (OK), 204 (No Content), 302 (Moved), or 304 (Not Modified).

 | Appendix: Cylance Infinity Data Service | 40

• For a status code 200, the response includes the requested centroid document. If the client requests a gzip
encoding, the contents are gzipped.

• For a status code 204, it means that there are no centroids for the model specified in the request.
• For a status code 302, in the response header, the location field contains the URL that the client is being

redirected to and where the centroids document is found. If the client requests a gzip encoding, the centroid
document is gzipped. The URL expiration time is between 1 hour and 1 day.

• For a status code 304, which means that there are no new centroids yet, the client gets an empty response
body.

If an error occurred, the service returns either 400 or 503. For either of these response codes, the body will contain
the following JSON documentation with a message field describing the error.

Centroids endpoint response

{
 "message" : "reason of failure"
}

For format=proto, the result is a binary file, which can be loaded directly into the scoring models.

For format=json, the result has the following structure:

JSON data structure

{
 "131037481645565647": {
 "white": {
 "timestamp": 1470700127
 "items": [
 {
 "Identifier": "trusted",
 "Radius": 1.0,
 "DistanceMean": 1.0,
 "DistanceStdDev": 0.2,
 "Kind": "subspace",
 "Type":"PE",
 "Indices": [832, 1562, 4981, 36992],
 "Values": [1.0, 1.0, 1.0, 1.0],
 "Status": "ACTIVE",
 "Timestamp": 1470700127
 },
 {
 "Identifier": "something-deleted",
 "Status": "DELETED",
 "Timestamp": 1470690127
 },
 ...
]
 },
 "black": {
 "timestamp": 1470700127
 "items": [
 {
 "Identifier": "mimikatz",
 "Radius": 45.0,
 "DistanceMean": 32.0,
 "DistanceStdDev": 8.0,
 "Kind": "fullspace",
 "Type": "PE",
 "Indices": [832, 834, 1562, 2630],

 | Appendix: Cylance Infinity Data Service | 41

 "Values": [0.19337, 0.19337, 1.0, 0.535912],
 "Status": "ACTIVE",
 "Timestamp": 1470700127
 },
 {
 "Identifier": "mimikatz2",
 "Radius": 40.0,
 "DistanceMean": 31.0,
 "DistanceStdDev": 7.0,
 "Kind": "fullprojected",
 "Type": "PE",
 "Indices": [830, 874, 1362, 2660],
 "Values": [0.193378, 0.10337, 1.0, 0.035912],
 "Status": "ACTIVE",
 "Timestamp": 1470700127
 }
]
 }
 },
 "130906327596576539": {
 "white": {
 "timestamp": 1470700127,
 "items": [
 {
 "Identifier": "trusted",
 "Radius": 1.0,
 "DistanceMean": 1.0,
 "DistanceStdDev": 0.2,
 "Indices": [832, 1562, 4981, 36992],
 "Values": [1.0, 1.0, 1.0, 1.0],
 "Status": "ACTIVE",
 "Timestamp": 1470700127,
 }
]
 },
 "black": {
 "timestamp": 1470700127,
 "items": [
 {
 "Identifier": "mimikatz",
 "Radius": 45.0,
 "DistanceMean": 32.0,
 "DistanceStdDev": 8.0,
 "Indices": [832, 834, 1562, 2630],
 "Values": [0.19337, 0.19337, 1.0, 0.535912],
 "Status": "ACTIVE",
 "Timestamp": 1470700127,
 },
 {
 "Identifier": "mimikatz2",
 "Radius": 40.0,
 "DistanceMean": 31.0,
 "DistanceStdDev": 7.0,
 "Indices": [830, 874, 1362, 2660],
 "Values": [0.193378, 0.10337, 1.0, 0.035912],
 "Status": "ACTIVE",
 "Timestamp": 1470700127,
 }
]
 }
 }

 | Appendix: Cylance Infinity Data Service | 42

}

Wblist endpoint
The wblist endpoint allows clients to get the latest restricted and allowed list of file hashes available.

Request

Item Description

URL GET /wblist

Parameters after (int, optional): Unix time stamp truncated to the second.

Examples GET /wblist?after=1470700100

Headers It is recommended that you pass the Accept-Encoding: gzip header in order
to compress the result.

Response

A successful response returns status code 302. In the response header, the location field contains the URL the
client is being redirected to and where the document containing the restricted and allowed list of file hashes is
found. If the client requests a compressed, gzip version, the document is gzipped. The URL expires in 1 day.

If an error occurred, the service returns either 400 or 503. For any of these response codes, the body contains the
following JSON documentation with a message field describing the error.

Allowed/Restricted endpoint response

{
 "message" : "reason of failure"
}

The JSON file has the following structure.

JSON data structure

{
 "white": {
 "items": [
 <sha256>,
 <sha256>,
 ...
]
 },
 "black": {
 "items": [
 <sha256>,
 <sha256>,
 ...
]
 }
}

 | Appendix: Cylance Infinity Data Service | 43

Appendix: Threat indicators
Each category represents an area that has been frequently seen in malicious software.

Anomalies
These indicators represent situations where the file has elements that are inconsistent or anomalous in some
way. Frequently, these are inconsistencies in structural elements in the file.

Indicator Description

16bitSubsystem The file utilizes the 16-bit subsystem. Malware uses this to exist in a less secure
and monitored part of the operating system, and frequently to perform privilege
escalation attacks.

Anachronism This PE appears to be lying about when it was written, which is atypical for
professionally written software.

AppendedData This PE has some extra content appended to it, beyond the normal areas of the
file. Appended data can frequently be used to embed malicious code or data, and
is frequently overlooked by protection systems.

AutoitDbgPrivilege The AutoIt script can perform debug activities.

AutoitManyDllCalls The AutoIt script uses many external DLL calls. The AutoIt runtime already has
many common functions, therefore using additional functionality from external
libraries may be a sign of maliciousness.

AutoitMutex The AutoIt script creates synchronization objects. This is often used by malware
to prevent multiple infections of the same target.

AutoitProcessCarving The AutoIt script is likely performing process carving to run its own code that
appears to come from another process. This is often done to hinder detection.

AutoitProcessInjection The AutoIt script is likely performing process injection to run code in other
processes' context possibly to stay undetected or to steal data.

AutoitRegWrite The AutoIt script writes into Windows registry.

Base64Alphabet The file contains evidence of usage of Base64 encoding of an alphabet. Malware
does this to attempt to avoid common detection or to attack other programs using
Base64 encoding.

CommandlineArgsImport The file imports functions that can be used to read arguments from a command
line. Malware uses this to collect information on subsequent runs.

ComplexMultipleFilters The file contains multiple streams with multiple filters.

ComplexObfuscated-
Encoding

The file contains an anomalously high number of obfuscated names.

 | Appendix: Threat indicators | 44

Indicator Description

ComplexUnsupportedVer-
sionEmbeddedFiles

The file uses the EmbeddedFiles features from newer versions of the PDF
standard than the file declares.

ComplexUnsupportedVer-
sionFlate

The file uses the FlateDecode feature from newer versions of the PDF standard
than the file declares.

ComplexUnsupportedVer-
sionJbig2

The file uses the JBIG2Decode feature from newer versions of the PDF standard
than the file declares.

ComplexUnsupportedVer-
sionJs

The file uses JavaScript features from newer versions of the PDF standard than
the file declares.

ComplexUnsupportedVer-
sionXFA

The file uses XFA features from newer versions of the PDF standard than
the file declares.

ComplexUnsupportedVer-
sionXobject

The file uses XOBject features from newer versions of the PDF standard than
the file declares.

ContainsFlash The file contains flash objects.

ContainsPE The file contains embedded executable files.

ContainsU3D The file contains U3D objects.

InvalidCodePageUsed The file uses an invalid or unrecognized locale, possibly to avoid detection.

InvalidData The file metadata is obviously bogus or corrupt.

InvalidStructure The file structure is not valid. The sizes, metadata, or internal sector allocation
table is wrong, which may indicate an exploit.

ManifestMismatch The file demonstrates an inconsistency in its manifest. Malware does this to avoid
detection, but rarely covers its tracks deeply.

NontrivialDLLEP This PE is a DLL with a nontrivial entry point. This is common among DLLs, but a
malicious DLL may use its entry point to take up residence in a process.

NullValuesInStrings Some strings within the file contain null characters in the middle.

PDFParserArraysContains-
NullCount

The file contains an anomalously high number of null values in arrays.

PDFParserArraysHetero-
geneousCount

The file contains an anomalously high number of arrays containing different types
of elements.

PDFParserMailtoURICount The file contains an anomalously high number of email links (mailto:).

PDFParserMinPageCount The file has an unusual structure of page objects, such as a high number of child-
page objects per node.

 | Appendix: Threat indicators | 45

Indicator Description

PDFParserNamesPound-
NameMaxLength

The file may attempt to obfuscate its contents by using long encoded strings.

PDFParserNamesPound-
NameMinLength

The file contains an anomalously high minimum length of an escaped name.

PDFParserNamesPound-
NameTotalLength

The file may attempt to obfuscate its contents by storing much of its content in
encoded strings.

PDFParserNamesPound-
NameUpperCount

The file contains an anomalously high number of names escaped with uppercase
hexadecimal characters.

PDFParserNamesPound-
NameValidCount

The file contains an anomalously high number of valid escaped names.

PDFParserNamesPound-
PerNameMaxCount

The file contains an anomalously high maximum number of escaped characters
per single name.

PDFParserNamesPound-
UnnecessaryCount

The file contains an anomalously high number of unnecessarily escaped names.

PDFParserNumbersLead-
ingDigitTallies8

The file contains an anomalously high number of numbers that start with 8 in
decimal representation.

PDFParserNumbersPlus-
Count

The file contains an anomalously high number of numbers with an explicit plus
sign.

PDFParserNumbersReal-
MaxRawLength

The file contains an anomalously high maximum length of a real number.

PDFParserPageCounts The file contains an anomalously high number of child-page objects.

PDFParserPageObject-
Count

The file contains an anomalously high number of page objects.

PDFParserSizeEOF The file contains an anomalously long end-of-file sequence(s).

PDFParserStringsHex-
LowerCount

The file contains an anomalously high number of strings escaped with lowercase
hexadecimal digits.

PDFParserStringsLiteral-
StringMaxLength

The file contains an anomalously high maximum length of a literal string.

PDFParserStringsOctal-
ZeroPaddedCount

The file contains an anomalously high number of octal escaped characters in
strings that are unnecessarily zero-padded.

PDFParserTrailerSpread The file contains an anomalously large spread between trailer objects.

PDFParserWhitespace-
CommentMaxLength

The file contains an anomalously high maximum length for a comment.

 | Appendix: Threat indicators | 46

Indicator Description

PDFParserWhitespace-
CommentMinLength

The file contains unusual short comments that are not used by reader software.

PDFParserWhitespace-
CommentTotalLength

The file contains an unusually large amount of commented-out data.

PDFParserWhitespace-
EOL0ACount

The file contains an anomalously high number of short end-of-line characters.

PDFParserWhitespace-
Whitespace00Count

The file contains an anomalously high number of zero-bytes used as whitespace.

PDFParserWhitespace-
Whitespace09Count

The file contains an anomalously high number of 09 bytes used as whitespace.

PDFParserWhitespace-
WhitespaceLongestRun

The file contains an anomalously long whitespace area.

PDFParserWhitespace-
WhitespaceTotalLength

The file contains an anomalously high number of whitespaces.

PDFParseru3DObjects-
NamesAllNames

The file contains an anomalously high number of U3D objects.

PossibleBAT The file contains evidence of having a standard Windows batch file included.
Malware does this to avoid common scanning techniques and to provide
persistence.

PossibleDinkumware The file shows evidence of including some components from DinkumWare.
Dinkumware is frequently used in various malware components.

PropertyImpropriety The file contains suspicious OOXML properties.

RaiseExceptionImports The file imports functions used to raise exceptions within a program. Malware
does this to implement tactics that make standard dynamic code analysis difficult
to follow.

ReservedFieldsViolation The file violates the specification in terms of the use of reserved fields.

ResourceAnomaly The file contains an anomaly in the resource section. Malware frequently contains
malformed or other odd bits in the resource section of a DLL.

RWXSection This PE may contain modifiable code, which is at best unorthodox and at worst
symptomatic of a virus infection. Frequently, this feature implies that the file has
been built using something other than a standard compiler or has been modified
after it was originally built.

SectorMalfeasance The file contains structural oddities with OLE sector allocation.

StringInvalid One of the references to a string in a string table pointed to a negative offset.

 | Appendix: Threat indicators | 47

Indicator Description

StringTableNotTerminated A string table was not terminated with a null byte. This could cause a fault at
runtime due to a string that does not end.

StringTruncated One of the references to a string in a string table pointed to a location after the end
of a file.

SuspiciousPDataSection This PE is hiding something in its "pdata" area, but it is not clear what it is. The
"pdata" area in a PE file is generally used for process runtime structures, but this
particular file contains something else.

SuspiciousRelocSection This PE is hiding something in its "relocations" area, but it is not clear what it
is. The "relocations" area in a PE file is generally used for relocating particular
symbols, but this particular file contains something else.

SuspiciousDirectoryNames The file contains OLE directory names that are suspicious.

SuspiciousDirectoryStruct-
ure

The file has oddities in the OLE directory structure.

SuspiciousEmbedding The file uses suspicious embedding of OLE.

SuspiciousVBA The file contains suspicious VBA code.

SuspiciousVBALib The file shows suspicious VBA library usage.

SuspiciousVBANames The file contains suspicious names associated with VBA structures.

SuspiciousVBAVersion The file contains suspicious VBA versioning.

SWFOddity The file contains certain questionable usages of embedded SWF.

TooMalformedToProcess The file is so malformed that it could not be parsed completely.

VersionAnomaly The file has issues with how it presents its version information. Malware does this
to avoid detection.

Collection
These indicators represent situations where the file has elements that indicate capabilities or evidence of
collecting data. This can include the enumeration of system configuration or the collection of specific sensitive
information.

Indicator Description

BrowserInfoTheft The file contains evidence of an intent to read passwords stored in browser
caches. Malware uses this to collect the passwords for exfiltration.

 | Appendix: Threat indicators | 48

Indicator Description

CredentialProvider The file contains evidence of interaction with a credential provider, or the desire
to appear as one. Malware does this because credential providers get access to
many types of sensitive data, such as usernames and passwords, and by acting as
one, they may be able to subvert the authentication integrity.

CurrentUserInfoImports The file imports functions that are used to gather information about the currently
logged-in user. Malware uses this to determine paths of action to escalate
privileges and to better tailor attacks.

DebugStringImports The file imports functions that are used to output debug strings. Typically, this is
disabled in production software, but left on in malware that is being tested.

DiskInfoImports The file imports functions that can be used to gather details about volumes on the
system. Malware uses this in conjunction with listing to determine facts about the
volumes in preparation for a further attack.

EnumerateFileImports The file imports functions that are used to list files. Malware uses this to look for
sensitive data or to find further points of attack.

EnumerateModuleImports The file imports functions that can be used to list all of the DLLs that a running
process uses. Malware uses this capability to locate and target specific libraries
for loading into a process, and to map out a process it wishes to inject into.

EnumerateNetwork The file demonstrates evidence of a capability to attempt to enumerate connected
networks and network adapters. Malware does this to determine where a target
system lies in relation to others, and to look for possible lateral paths.

EnumerateProcessImports The file imports functions that can be used to list all of the running processes on
a system. Malware uses this capability to locate processes to inject into or those
that it wishes to delete.

EnumerateVolumeImports The file imports functions that can be used to list the volumes on the system.
Malware uses this to find all the areas that it might need to search for data, or to
spread an infection.

GinaImports The file imports functions that are used to access Gina. Malware does this to
attempt to breach the secure ctrl-alt-delete password entry system or other
network login functions.

HostnameSearchImports The file imports functions that are used to gather information about host names
on the network and the hostname of the machine itself. Malware uses this
capability to better target further attacks or to scan for new targets.

KeystrokeLogImports The file imports functions that can capture and log keystrokes from the keyboard.
Malware uses this to capture and save keystrokes to find sensitive information
such as passwords.

OSInfoImports The file imports functions that are used to gather information about the current
operating system. Malware uses this to determine how to better tailor further
attacks and to report information back to a controller.

 | Appendix: Threat indicators | 49

Indicator Description

PossibleKeylogger The file contains evidence of key-logger type activity. Malware uses key loggers to
collect sensitive information from the keyboard.

PossiblePasswords The file has evidence of including common passwords, or a structure that would
enable brute forcing common passwords. Malware uses this to attempt to
penetrate a network further by accessing other resources via password.

ProcessorInfoWMI The file imports functions that can be used to determine details about the
processor. Malware uses this to tailor attacks and to exfiltrate this data to
common command-and-control infrastructure.

RDPUsage The file shows evidence of interacting with the Remote Desktop Protocol (RDP).
Malware frequently uses this to move laterally and to offer direct command-and-
control functionality.

SpyString The file is possibly spying on the clipboard or user actions via accessibility API
usage.

SystemDirImports The file imports functions used to locate the system directory. Malware does this
to find where many of the installed system binaries are located, as it frequently
hides among them.

UserEnvInfoImports The file imports functions that are used to gather information about the
environment of the current logged-in user. Malware uses this to determine details
about the logged-in user and to look for other intelligence that can be gleaned
from the environment variables.

Data loss
These indicators represent situations where the file has elements that indicate capabilities or evidence of
exfiltration of data. This can include outgoing network connections, evidence of acting as a browser, or other
network communications.

Indicator Description

AbnormalNetworkActivity The file implements a non-standard method of networking. Malware does this to
avoid detection of more common networking approaches.

BrowserPluginString The file has the capability to enumerate or install browser plugins.

ContainsBrowserString The file contains evidence of attempting to create a custom UserAgent string.
Malware frequently uses common UserAgent strings to avoid detection in
outgoing requests.

DownloadFileImports The file imports functions that can be used to download files to the system.
Malware uses this as both a way to further stage an attack and to exfiltrate data
via the outbound URL.

 | Appendix: Threat indicators | 50

Indicator Description

FirewallModifyImports The file imports functions used to modify the local Windows firewall. Malware
uses this to open holes and avoid detection.

HTTPCustomHeaders The file contains evidence of the creation of other custom HTTP headers. Malware
does this to facilitate interactions with command-and-control infrastructures and
to avoid detection.

IRCCommands The file contains evidence of interaction with an IRC server. Malware commonly
uses IRC to facilitate a command-and-control infrastructure.

MemoryExfiltrationImports The file imports functions that can be used to read memory from a running
process. Malware uses this to determine proper places to insert itself, or to extract
useful information from the memory of a running process, such as passwords,
credit cards, or other sensitive information.

NetworkOutboundImports The file imports functions that can be used to send data out to the network or the
general Internet. Malware uses this as a method for exfiltration of data or as a
method for command and control.

PipeUsage The file imports functions that allow the manipulation of named pipes. Malware
uses this as a method of communication and of data exfiltration.

RPCUsage The file imports functions that allow it to interact with Remote Procedure Call
(RPC) infrastructure. Malware uses this to spread, or to send data to remote
systems for exfiltration.

Deception
These indicators represent situations where the file has elements that indicate capabilities or evidence of a
file attempting to be deceptive. Deception can come in the form of hidden sections, inclusion of code to avoid
detection, or indications that it is labeled improperly in metadata or other sections.

Indicator Description

AddedHeader The file contains an additional, obfuscated PE header that may be a hidden
malicious payload.

AddedKernel32 The file contains an additional, obfuscated reference to kernel32.dll, a library that
may be used by a malicious payload.

AddedMscoree The file contains an additional, obfuscated reference to mscoree.dll, a library that
may be used by a malicious payload.

AddedMsvbvm The file contains an additional, obfuscated reference to msvbvm.dll, a library that
may be used by a malicious payload compiled for Microsoft Visual Basic 6.

 | Appendix: Threat indicators | 51

Indicator Description

AntiVM The file demonstrates features that can be used to determine if the process is
running in a virtual machine. Malware does this to avoid running in virtualized
sandboxes that are becoming more common.

AutoitDownloadExecute The AutoIt script can download and execute files. This is often done to deliver
additional malicious payloads.

AutoitObfuscationString-
Concat

The AutoIt script is likely obfuscated with string concatenation. This is often done
to avoid detection of whole, suspicious commands.

AutoitShellcodeCalling The AutoIt script uses the CallWindowProc() Windows API function that may
indicate the injection of shellcode.

AutoitUseResources The AutoIt script uses data from resources stored alongside the script. Malware
often stores important parts of itself as resource data and unpacks them in
runtime, and therefore this looks suspicious.

CabinentUsage The file shows evidence of containing a CAB file. Malware does this to package
sensitive components in a way that many detection systems cannot see.

ClearKernel32 The file contains a reference to kernel32.dll, a library that may be used by a
malicious payload.

ClearMscoree The file contains a reference to mscoree.dll, a library that may be used by a
malicious payload.

ClearMsvbvm The file contains a reference to msvbvm.dll, a library that may be used by a
malicious payload compiled for Microsoft Visual Basic 6.

ComplexInvalidVersion The file declares the wrong PDF version.

ComplexJsStenography-
Suspected

The file may contain JavaScript code hidden in literal strings.

ContainsEmbeddedDoc-
ument

The file contains a document embedded inside the object. Malware can use this to
spread an attack to multiple sources or to otherwise hide its true form.

CryptoKeys The file contains evidence of having an embedded cryptographic key. Malware
does this to avoid detection and perhaps as authentication with remote services.

DebugCheckImports The file imports functions that would allow it to act like a debugger. Malware uses
this capability to read and write from other processes.

EmbeddedPE The PE has additional PEs within it, which is usually only the case with software
installation programs. Frequently, malware embeds a PE file that it then drops to
disk and executes. This technique is often used to avoid protection scanners by
packaging binaries in a format that the underlying scanning technology does not
understand.

 | Appendix: Threat indicators | 52

Indicator Description

EncodedDosStub1 The PE contains an obfuscated PE DOS stub that may belong to a hidden
malicious payload.

EncodedDosStub2 The PE contains an obfuscated PE DOS stub that may belong to a hidden
malicious payload.

EncodedPE The PE has additional PEs hidden within it, which is extremely suspicious. It is
similar to the EmbeddedPE indicator, but uses an encoding scheme to attempt to
further hide the binary inside the object.

ExecuteDLL The PE contains evidence of the capability to execute a DLL using common
methods. Malware does this as a method to avoid common detection practices.

FakeMicrosoft The PE claims to be written by Microsoft but it does not look like a Microsoft PE.
Malware commonly masquerades as Microsoft PEs to look inconspicuous.

HiddenMachO The file has another MachO executable file within, which is not properly declared.
This may be an attempt to hide the payload from being easily detected.

HTTPCustomUserAgent The file contains evidence of manipulation of the browser UserAgent. Malware
does this to facilitate interactions with command-and-control infrastructures and
to avoid detection.

InjectProcessImports The PE can inject code into other processes. This capability frequently implies that
a process is attempting to be deceptive or hostile in some way.

InvisibleEXE The PE appears to run invisibly, but it is not a background service. It might be
designed to remain hidden.

JSTokensSuspicious The file contains unusually suspicious JavaScript.

MSCertStore The file shows evidence of interacting with the core Windows certificate store.
Malware does this to collect credentials and to insert rogue keys into the stream
to facilitate actions such as man-in-the-middle attacks.

MSCryptoImports The file imports functions to use the core Windows cryptography library. Malware
uses this to leverage the locally installed cryptography so that it does not need to
carry around its own cryptography.

PDFParserDotDotSlash1-
URICount

The file may attempt path traversal using relative paths such as "../".

PDFParserJavaScriptMag-
icseval~28

The file may contain obfuscated JavaScript or can run dynamically loaded
JavaScript with eval().

PDFParserJavaScriptMag-
icsunescape~28

The file may contain obfuscated JavaScript.

PDFParserjsObjectsLength The file contains an anomalously high number of individual JavaScript scripts.

 | Appendix: Threat indicators | 53

Indicator Description

PDFParserJSStreamCount The file contains an unusually high number of JavaScript-related streams.

PDFParserJSTokenCounts-
0cumulativesum

The file contains an anomalously high number of JavaScript tokens.

PDFParserJSTokenCounts-
1cumulativesum

The file contains an anomalously high number of JavaScript tokens.

PDFParserNamesAll-
NamesSuspicious

The file contains an anomalously high number of suspicious names.

PDFParserNamesObfuscat-
edNamesSuspicious

The file contains an anomalously high number of obfuscated names.

PDFParserPEDetections The file contains embedded PE file(s).

PDFParserSwfObjectsxOb-
servationsxSWFObjects-
version

The file contains an SWF object with an unusual version number.

PDFParserSwfObjectsxOb-
servationsxSWFObjectsx-
ZLibcmf

The file contains an SWF object with unusual compression parameters.

PDFParserswfObjectsxOb-
servationsxSWFObjects-
xZLibflg

The file contains an SWF object with unusual compression flag parameters.

PE_ClearDosStub1 The file contains a DOS stub, indicative of PE file inclusion.

PE_ClearDosStub2 The file contains a DOS stub, indicative of PE file inclusion.

PE_ClearHeader The file contains PE file header data that does not belong in the file structure.

PEinAppendedSpace The file contains a PE file that does not belong in the file structure.

PEinFreeSpace The file contains a PE file that does not belong in the file structure.

ProtectionExamination The file seems to be looking for common protection systems. Malware does this
to initiate an anti-protection action tailored to that installed on the system.

SegmentSuspiciousName A segment has either an invalid string as a name or an unusual non-standard
name. This may indicate post-compilation tampering or the use of packers or
obfuscators.

SegmentSuspiciousSize The segment size is significantly different from the size of all content sections
within. This may indicate the use of an unreferenced area or the reservation of
space for runtime unpacking of malicious code.

 | Appendix: Threat indicators | 54

Indicator Description

SelfExtraction The file seems to be a self-extracting archive. Malware frequently uses this tactic
to obfuscate their true intentions.

ServiceDLL The file seems to be a service DLL. Service DLLs are loaded in the svchost.exe
process and are a common persistence methodology for malware.

StringJsSplitting The file contains suspicious JS tokens.

SWFinAppendedSpace The file contains a shockwave flash object that does not belong in the document
structure.

TempFileImports The file imports functions used to access and manipulate temporary files.
Malware does this because temporary files tend to avoid detection.

UsesCompression The file seems to have portions of the code that appear to be compressed.
Malware uses these techniques to avoid detection.

VirtualProtectImports The file imports functions that are used to modify the memory of a running
process. Malware does this to inject itself into running processes.

XoredHeader The file contains an xor-obfuscated PE header that may be a hidden malicious
payload.

XoredKernel32 The file contains an xor-obfuscated reference to kernel32.dll, a library that may be
used by a malicious payload.

XoredMscoree The file contains an xor-obfuscated reference to mscoree.dll, a library that may be
used by a malicious payload.

XoredMsvbvm The file contains an xor-obfuscated reference to msvbvm.dll, a library that may be
used by a malicious payload compiled for Microsoft Visual Basic 6.

Destruction
These indicators represent situations where the file has elements that indicate capabilities or evidence of
destruction. Destructive capabilities include the ability to delete system resources like files or directories.

Indicator Description

action_writeByte The VBA script within the file is likely writing bytes to a file, which is an unusual
action for a legitimate document.

action_hexToBin The VBA script within the file is likely using hexadecimal-to-binary conversion that
may indicate decoding a hidden malicious payload.

appended_URI The file contains a link that does not belong in the file structure.

 | Appendix: Threat indicators | 55

Indicator Description

appended_exploit The file contains suspicious data outside of the file structure that may be
indicative of an exploit.

appended_macro The file contains a macro script that does not belong in the file structure.

appended_90_nopsled The file contains a nop-sled that does not belong in the file structure; this is almost
certainly there to facilitate exploitation.

AutorunsPersistence The file attempts to interact with common methods of persistence (for example,
startup scripts). Malware commonly uses these tactics to attain persistence.

DestructionString The file has capabilities to kill processes or shut down the machine via shell
commands.

FileDirDeleteImports The PE imports functions that can be used to delete files or directories. Malware
uses this to break systems and to cover its tracks.

JsHeapSpray The file likely contains heap spray code.

PossibleLocker The file demonstrates evidence of a desire to lock out common tools by policy.
Malware does this to retain persistence and make detection and cleanup more
difficult.

RegistryManipulation The file imports functions that are used to manipulate the Windows registry.
Malware does this to attain persistence, avoid detection, and for many other
reasons.

SeBackupPrivilege The PE might attempt to read files to which it has not been granted access. The
SeBackup privilege allows access to files without honoring access controls. It
is frequently used by programs that handle backups and is frequently limited to
administrative users, but it can be used maliciously to gain access to specific
elements that might otherwise be difficult to access.

SeDebugPrivilege The PE might attempt to tamper with system processes. The SeDebug privilege
is used to access processes other than your own and is frequently limited to
administrative users. It is often paired with reading and writing to other processes.

SeRestorePrivilege The PE might attempt to change or delete files to which it has not been granted
access. The SeRestore privilege allows writing without consideration of access
control.

ServiceControlImports The file imports functions that can control Windows services on the current
system. Malware uses this either to launch itself into the background via installing
as a service, or to disable other services that may have a protective function.

SkylinedHeapSpray The file contains an unmodified version of skylined heap spray code.

SpawnProcessImports The PE imports functions that can be used to spawn another process. Malware
uses this to launch subsequent phases of an infection, typically downloaded from
the Internet.

 | Appendix: Threat indicators | 56

Indicator Description

StringJsExploit The file contains JavaScript code that is likely capable of exploitation.

StringJsObfuscation The file contains JavaScript obfuscation tokens.

TerminateProcessImports The file imports functions that can be used to stop a running process. Malware
uses this to attempt to remove protection systems, or to cause damage to a
running system.

trigger_AutoClose The VBA script within the file is likely trying to execute automatically when the file
is closing.

trigger_Auto_Close The VBA script within the file is likely trying to execute automatically when the file
is closing.

trigger_AutoExec The VBA script within the file is likely trying to execute automatically.

trigger_AutoExit The VBA script within the file is likely trying to execute automatically when
the file is closing.

trigger_AutoNew The VBA script within the file is likely trying to execute automatically when a
new file is being created.

trigger_AutoOpen The VBA script within the file is likely trying to execute as soon as the file is
opened.

trigger_Auto_Open The VBA script within the file is likely trying to execute as soon as the file is
opened.

trigger_DocumentBefore-
Close

The VBA script within the file is likely trying to execute automatically just before
the file closes.

trigger_DocumentChange The VBA script within the file is likely trying to execute automatically when the file
is being changed.

trigger_Document_Close The VBA script within the file is likely trying to execute automatically when
the file is closing.

trigger_Document_New The VBA script within the file is likely trying to execute automatically when a
new file is being created.

trigger_DocumentOpen The VBA script within the file is likely trying to execute as soon as the file is
opened.

trigger_Document_Open The VBA script within the file is likely trying to execute as soon as the file is
opened.

trigger_NewDocument The VBA script within the file is likely trying to execute automatically when a
new file is being created.

 | Appendix: Threat indicators | 57

Indicator Description

trigger_Workbook_Close The VBA script within the file is likely trying to execute automatically when a
Microsoft Excel workbook is closing.

trigger_Workbook_Open The VBA script within the file is likely trying to execute automatically when a
Microsoft Excel workbook is opening.

UserManagementImports The file imports functions that can be used to change users on the local system.
It can add, delete, or change key user details. Malware can use this capability to
achieve persistence or cause harm to the local system.

VirtualAllocImports The file imports functions that are used to create memory in a running process.
Malware does this to inject itself into a running process.

Shellcodes
These indicators represent situations where a small piece of code is used as the payload in the exploitation of a
software vulnerability. It is called shellcode because it typically starts a command shell from which the attacker
can control the compromised machine, but any piece of code that performs a similar task can be called shellcode.

Indicator Description

ApiHashing The file contains a byte sequence that looks like shellcode that tries to stealthily
find library APIs loaded in memory.

BlackholeV2 The file looks like it might have come from the Blackhole exploit kit.

ComplexGotoEmbed The file may be able to force the browser to go to an address or to perform an
action.

ComplexSuspiciousHeaderLocationThe PDF header is located at a non-zero offset which may indicate an attempt to
prevent this file from being recognized as a PDF document.

EmbeddedTiff The file may contain a crafted TIFF image with nop-sled to facilitate exploitation.

EmbeddedXDP The file likely contains another PDF as an XML Data Package (XDP).

FindKernel32Base1 The file contains a byte sequence that looks like a shellcode that tries to locate
kernel32.dll in memory.

FindKernel32Base2 The file contains a byte sequence that looks like a shellcode that tries to locate
kernel32.dll in memory.

FindKernel32Base3 The file contains a byte sequence that looks like a shellcode that tries to locate
kernel32.dll in memory.

FunctionPrologSig The file contains a byte sequence that is a typical function prolog, and likely
contains shellcode.

 | Appendix: Threat indicators | 58

Indicator Description

GetEIP1 The file contains a byte sequence that looks like a shellcode that resolves its own
address to locate other things in memory and facilitate exploitation.

GetEIP4 The file contains a byte sequence that looks like a shellcode that resolves its own
address to locate other things in memory and facilitate exploitation.

IndirectFnCall1 The file contains a byte sequence that looks like an indirect function call, and is
likely shellcode.

IndirectFnCall2 The file contains a byte sequence that looks like an indirect function call, and is
likely shellcode.

IndirectFnCall3 The file contains a byte sequence that looks like an indirect function call, and is
likely shellcode.

SehSig The file contains a byte sequence that is typical for Structured Exception Handling
(SEH), and likely contains shellcode.

StringLaunchActionBrowser The file may be able to force the browser to go to an address or to perform an
action.

StringLaunchActionShell The file may be able to execute shell actions.

StringSingExploit The file might contain an exploit.

Miscellaneous indicators
This section lists the indicators that do not fit into the other categories.

Indicator Description

AutoitFileOperations The AutoIt script can perform multiple actions on files. This may be used for
information gathering, persistence, or destruction.

AutorunString The file has the capability to achieve persistence by using autorun mechanisms.

CodepageLookupImports The file imports functions used to look up the codepage (location) of a running
system. Malware uses this to differentiate in which country/region a system is
running in to better target particular groups.

MutexImports The file imports functions to create and manipulate mutex objects. Malware
frequently uses mutexes to avoid infecting a system multiple times.

OpenSSLStatic The file contains a version of OpenSSL compiled to appear stealthy. Malware does
this to include cryptography functionality without leaving strong evidence of it.

 | Appendix: Threat indicators | 59

Indicator Description

PListString The file has the capability to interact with property lists that are used by the
operating system. This may be used to achieve persistence or to subvert various
processes.

PrivEscalationCryptBase The file shows evidence of attempting to use a privilege escalation using
CryptBase. Malware uses this to gain more privileges on the affected system.

ShellCommandString The file has the capability to use sensitive shell commands for reconnaissance,
elevation of privilege, or data destruction.

SystemCallSuspicious The file has the capability to monitor or control system and other processes,
performing debug-like actions.

 | Appendix: Threat indicators | 60

Appendix: Prometheus monitoring support
Prometheus is a monitoring service for server applications. A Prometheus server uses HTTP GET calls to scrape
data from various services, and allows you to run queries against that data. For more information, see https://
prometheus.io/.

The table below details the metrics that the Cylance Engine provides to a Prometheus server. The Cylance Engine
provides the following types of metrics:

• Counter: A metric that can only increase (for example, a total amount).
• Guage: A counter that can increase or decrease (for example, a count of items in process).
• Histogram: A sample of observations sorted into buckets, along with the sum and count of observations.

Metric Scope Type Description

cyeng_samples_in_process Global Gauge This metric tracks the number of samples
that are currently in process. It can range
from 0 (idle) up to the max concurrency
setting in the INI file or command-line option.

cyeng_total_errors Global Counter This metric is the total number of errors
encountered during the scoring process.
Composite files (for example, archives)
can generate more than one error or a
combination of valid, aborted, and error
counts.

cyeng_total_unknowns Global Counter This metric is the total number of samples
that do not have a corresponding model.
Composite files (for example, archives)
can result in more unknowns than samples
processed, as one archive sample may
contain many supported and unsupported
files.

cyeng_total_aborted_samples Global Counter This metric is the total number of samples
that were aborted due to a timeout or
exceeding the maximum nesting level.
Composite files (for example, archives) can
produce both valid and aborted results.

cyeng_total_bytes_processed Global Counter This metric is the total number of sample
bytes that have been processed. This counter
is the top-level sample size and does not
count samples that are extracted from a
sample (for example, Apple Universal Binaries
or archives).

cyeng_sample_processing_time Global Histogram This metric is the observation of sample
processing times for all sample types. For a
composite file, the observation is for the total
processing time of all samples it contains.

 | Appendix: Prometheus monitoring support | 61

https://prometheus.io/
https://prometheus.io/

Metric Scope Type Description

cyeng_sample_size Global Histogram This metric is the observation of the sample
size, in bytes. For a composite file, the
observation is for the total size of all samples
it contains.

cyeng_total_<sample-
format>_samples_processed

Per model Counter This metric is the total number of processed
samples of the type specified with <sample-
format>. For a composite file, the count
applies to all samples that it contains. For
example, if an archive contains another
archive, this counter would accumulate 2
counts for the ARC format in addition to any
formats inside the archive.

cyeng_total_benign_<sample-
format>_samples

Per model Counter This metric is the total number of benign
samples (a score between 0.0 and +1.0,
inclusive) of the type specified with <sample-
format>. For a composite file, the count
applies to all samples that it contains.

cyeng_total_suspicious_<sample-
format>_samples

Per model Counter This metric is the total number of suspicious
samples (a score between -0.6 and 0.0,
exclusive) of the type specified with <sample-
format>. For a composite file, the count
applies to all samples that it contains.

cyeng_total_malicious_<sample-
format>_samples

Per model Counter This metric is the total number of malicious
samples (a score between -1.0 and -0.6,
inclusive) of the type specified with <sample-
format>. For a composite file, the count
applies to all samples that it contains.

cyeng_<sample-
format>_processing_time

Per model Histogram This metric is the observation of sample
processing times for the sample type
specified with <sample-format>. For
composite files, the entire processing time
of the composite file is included in the
composite file's bucket (for example, ARC or
MOFAT).

 | Appendix: Prometheus monitoring support | 62

Appendix: CylanceTcpService Protocol
The CylanceTcpService Protocol was known previously as the Infinity Daemon Protocol (IDP).

All requests begin with a single character (byte) specifying the command to perform. The format of the remainder
of the request is command-specific and is described below.

Once the service has finished performing a command, it sends a response to the client and then attempts to
receive another command from the connection. The format of the response is also command-specific and is
described below.

• All numeric fields are represented in binary. For multiple-byte fields such as 16- and 32-bit integers, the byte
order is little-endian.

• String fields are encoded as UTF-8 with no initial byte order mark (BOM) or terminating null character.
In general, string fields are preceded by a length field that specifies the size of the string in bytes (not
characters).

Process command
The process command (p) instructs the service to process a file located at the given path. There are two main
process commands: Score and Explain; legacy commands ScoreFile, ScoreArchive, ExplainFile, ExplainArchive,
and class names are still accepted but not recommended. Class names are explained in Classless-based and
activity-class-based scoring.

The format of the p command is:

Field Data element Description

Command byte Char p for the process command.

Command length Byte This is the length of the process command, which is
normally 5 for the score command or 7 for the explain
command. The length is longer when using fully
specified class names or passing parameters with the
command (for example, passwords for archives).

Command String This is the string that contains the command (for
example Score or Explain). The field was originally
called ActivityClass but that has been deprecated. For
more information, see Classless-based and activity-
class-based scoring.

File path length UInt16 This is the length of the file path in bytes.

Note: This is not the number of characters in the path
but the number of UTF-8 encoded bytes.

File path String This is the fully qualified path to the file to
process. The file must reside on a path that is visible
to the TCP service.

Relative paths are relative to the TCP service and
should not be used.

 | Appendix: CylanceTcpService Protocol | 63

The format of the response is:

Field Data element Description

Routing tag length Byte This is the length of the routing tag. If the command
is successful, the length is 0. If an error occurred, then
the length is non-zero.

Routing tag String This is the routing tag string. If the routing tag length
field is 0, this field is empty.

Feature count Byte This is the number of features being returned in
this response. Up to 255 features can be returned
although normally there is only one.

Feature JSON length UInt32 This is the length of JSON returned for the feature.

Feature JSON String This is the JSON object that contains the feature.

The routing tag is a status string returned from the service for every process command. For commands that
complete successfully, the routing tag is an empty string (that is, "") which means the first byte of the response is
0. Other routing tags provide additional information.

• "": Success. At least one feature is available in the response. Note that the included feature(s) may indicate an
error but the service was able to at least attempt to process the file.

• "unknown": Invalid input or format not supported. This tag is returned when, for example, a file is provided that
no loaded model can process. No features were returned as part of this response.

• "error": Unable to process the input. The command should not be repeated and would not succeed if retried
(for example, if the file was not found or could not be read). No features were returned as part of this
response.

• "fault": A temporary error occurred. The command can be repeated at a later time. Examples of this are file-
sharing violations and similar errors. No features were returned as part of this response.

The routing tag only represents the status of the top-level operation and does not report issues during the
processing of the file, for instance, once the file has been opened successfully. If an error occurs during the
processing of a file, the service still produces a feature that contains more detailed information on the error.

Up to 255 features can be returned in a single process command. For most files, a single feature is returned
that contains the score or a set of threat indicators. Due to the existence of archives, multiple features may be
returned for a single file (for example, a .zip file contains multiple PE files). When the feature count field is greater
than one, the feature JSON length and feature JSON fields are repeated for each feature. Applications must be
prepared to examine all features because the order of the features is not guaranteed.

The feature name starts with SampleScoring for a score operation and TTMStatic for an explain operation.
Because files may contain other files (for example, archives), a pseudo-path is appended to one of those strings
to identify from where the file originated. Each level of nesting is separated by a vertical bar (|).

Due to the maximum length of the feature name (255 bytes), heavily nested feature names may be truncated to fit
into the 255-byte limit. Two truncation steps that are applied in order until the length of the feature name fits into
the limit:

• Any SHA256 hashes in the name are reduced from 64 characters to 8 characters followed by a tilde (~).
SHA256 hashes are used when the name of the file cannot be determined.

• The feature name is the concatenation of "..." with the last 252 bytes of the UTF-8 encoded feature name.

 | Appendix: CylanceTcpService Protocol | 64

Because the feature name may be truncated, it is recommended to track files by their SHA256 hash that is
returned as part of the feature JSON.

For example, a resulting feature-name key for a single file looks like:

SampleScoring:example-file.exe

Resulting activity keys for an archive look like:

SampleScoring:test-file.zip|file1.exe
SampleScoring:test-file.zip|file2.exe
SampleScoring:test-file.zip|file3.pdf

Archives inside of archives are supported and each level of archive is separated with a vertical bar.

Shutdown command
The shutdown command (s) instructs the service to stop listening for incoming connections and exit.

In the CylanceTcpService application, the shutdown command is disabled by default. To enable it, add the key-
value pair ShutdownCommand=true to the Service section of the CylanceTcpService.ini configuration file or run
CylanceTcpService with the -s or --shutdown flag.

The shutdown command is a single byte, "s". There are no other required fields and no response is returned. If the
shutdown command is disabled via the CylanceTcpService.ini configuration file, the command is simply ignored.

Multiple scores for a file
Because this technology is model based, it is important to apply the correct model to a given file. If the wrong
model were used to determine the score, then a file might escape the level of scrutiny that is appropriate for that
file. To address this, CylanceTcpService checks the file against all model types that have been loaded. As a result,
the client must be prepared to receive multiple JSON objects for a given file when using these commands. Each
of these objects indicates the model that was used to provide the score found in that object.

Client code should determine what action to take when the service returns more than one score. Depending on
the application and workflow, the client application might take into consideration the declared file type (that is,
the file extension or the MIME-type). For example, for a given file, if the file extension indicates a PDF file, but
the service reports a negative score when analyzing it as a PE file, it is quite possible that it has been purposely
disguised as a PDF file to avoid detection.

The p command supported by the Infinity Daemon Protocol can return a maximum of 255 results. If a given Score
request produces more than 255 results, the list will be truncated. Because a file can be scored with multiple
models, this guide recommends no more than 100 files per archive, especially when scoring with two or more
models loaded into the service.

Classless-based and activity-class-based scoring
Although CylanceTcpService has replaced TcpShim and InfinityTcpService, it still supports
the activity-class-based scoring supported by the legacy applications; however, the newer
and more flexible classless-based scoring is highly preferred. In TcpShim, the command
was the fully-qualified name of the class that should process the file (for example
Cylance.Infinity.Activity.SampleScoring.SampleScoringPEActivity). This meant that the

 | Appendix: CylanceTcpService Protocol | 65

client application needed to know the kind of file (in this case, PE) before calling TcpShim to process the file.
Processing archive files makes this challenge even greater, because a given archive file can contain multiple
different file types, each requiring a possibly different activity class.

The InfinityTcpService introduced classless-based scoring, in which the class name field in the request was
replaced by a command, such as ScoreFile, ScoreArchive, ExplainFile, or ExplainArchive. In turn, these commands
were further reduced in the CylanceTcpService to just Score and Explain. The client application no longer needs to
know beforehand what kind of file it is; the CylanceTcpService scores or explains it against all applicable models,
and returns zero or more results.

While the Score and Explain commands are highly recommended, the ScoreFile, ScoreArchive, ExplainFile, and
ExplainArchive commands still work; however, ScoreFile and ExplainFile return an error if the file given is an
archive, while ScoreArchive and ExplainArchive return an error if the file is not an archive.

Additionally, the class-based scoring still works but the ClassName entry in the activity section(s) of the
CylanceTcpService.ini configuration file are not populated by default. The class name has also became arbitrary
and no longer maps to a name of an activity class in CylanceTcpService; it just needs to be a unique string for
each activity.

Passwords specified for archives
In the CylanceTcpService.ini configuration file, you can specify a set of default passwords that get automatically
applied, in order, if the archive cannot be opened. If a specific password is known for an archive, it can be passed
as part of the Command field. The syntax follows that for URLs:

Score?pw=foo
Score?pw=foo&pw=bar
Score?pw=foo,bar
Score?pw=foo,bar&pw=baz

One or more passwords can be sent with the command as long as the total length of the command and all
passwords does not exceed the 255 bytes allowed for the command. The first password is separated from the
command with a ?pw=. The string following the "=" is a comma-delimited list of passwords. Spaces are not
allowed in passwords that are passed via this mechanism.

Alternatively, instead of using a comma-separated list, the pw specifier can be repeated multiple times by using
&pw=. As long as the total command length does not exceed 255 bytes, no limit exists on the number of times
that this can be repeated, or how many elements are in one of the comma-separated lists.

The syntax for the Explain command is the same except that Explain is substituted for Score.

File-scoring applications
Client applications, such as samplescore, tmstatic, and the InfinityDaemonClient utility, provide the external
application interface to the CylanceTcpService file-scoring service. These applications can be called from the
shell, or used as a Python API, to invoke directly from client applications.

Samplescore client
The samplescore client is an example of a Python-based client for the samplescored service script that
demonstrates how to analyze files or directories (recursively) and produce a comma-separated-value (CSV) report
showing the confidence scores for each file.

 | Appendix: CylanceTcpService Protocol | 66

Note: The scamplescore client works with the Cylance Engine Protocol only. It does not work with the RESTful
API.

To use the samplescore client, the samplescored service script must be running.

Samplescore argument Description Valid values

-p PORT This is an optional port number that the samplescored
service is listening to.

1024 to 65535

-o PATH This is an optional output path for the CSV report. A valid file path

FILENAME This is the file name, including the path if necessary,
of the file to be scored.

A valid file name with
read access

The following is an example of the samplescore command:

samplescore -p 9002 -o outputfile badfile.exe

The samplescore client can score both files and archives with the same command.

The CSV report produced by samplescore provides the following details:

Output Description

Name The file name

Threat How the threat is categorized if the file scores as a bad file

Score The score returned for the file

Path The path to the file

Type The file type

SHA256 The SHA256 hash for the file

Ttmstatic script
The ttmstatic script is an example of a Python script that demonstrates how, using static analysis, to check a
file for common indicators of risky software. The script sends the results to the console as text or JSON. To use
ttmstatic, the samplescored service script must be running.

Note: The ttmstatic script works with the Cylance Engine Protocol only. It does not work with the RESTful API.

Argument Description Valid values

-p PORT This is an optional port number that the samplescored
service is listening to.

1024 to 65535

-j This argument outputs the results in JSON format
rather than the default text.

—

 | Appendix: CylanceTcpService Protocol | 67

Argument Description Valid values

FILENAME This is the file name, including path if necessary, of
the file to be explained.

A valid file name with
read access

The following is an example of the ttmstatic command:

$ ttmstatic -j badfile.exe

The ttmstatic command can analyze both files and archives using the same command.

InfinityDaemonClient utility
The InfinityDaemonClient utility is a simple utility to send commands to the Cylance Engine using the Infinity
Daemon Protocol. It does not work when the Cylance Engine is running the Cylance Engine RESTful API (CERA).

Note: The InfinityDaemonClient utility works with the Cylance Engine Protocol only. It does not work with the
RESTful API.

The basic syntax is:

InfinityDaemonClient [<host>:<port>] p <command> <file>

The <host>:<port> specification is optional and defaults to localhost:9002. If the Cylance Engine is running on a
different port, then you must be specify that port number.

The second argument is the command byte. Only two options are available for this:

Command Description

p This command processes a file, either scoring or explaining the file, depending on
the <command> argument. The resulting response from the service is echoed to the
terminal. You must include the <command> and <file> arguments.

s If the shutdown command is enabled, this command shuts down the service.
When you send a shutdown command, the <command> and <file> arguments are
not required; if you include them, they are ignored.

The value for the <command> argument is either "Score" or "Explain" to score or explain a file or archive,
respectively. The legacy commands "ScoreFile", "ScoreArchive", "ExplainFile", and "ExplainArchive", and class-
based scoring are still supported but not recommended. For more information, see Classless-based and activity-
class-based scoring.

The value for the <file> argument is the path to a file or archive. The InfinityDaemonClient utility can only process
a single file or archive for each invocation.

InfinityDaemonClient processes the command and displays the results to the terminal.

The example output of scoring a single file is:

$ InfinityDaemonClient localhost:9002 p Score infinityd.exe
Routing tag: ""
1 features document(s)
----SampleScoring:infinityd.exe----
{
 "CentroidHash": "1359238976895146529",

 | Appendix: CylanceTcpService Protocol | 68

 "SampleFormat": "PE",
 "Determinant": "MODEL",
 "ModelVersion": "131786662583688997",
 "SHA256": "5AE1246EAADE01C5840338850D7B35BF70243FC13A8E006642445DB08CB42A50",
 "ParseStatus": "OK",
 "Score": 1.0,
 "IsComplete": true
}

• The first line of the response indicates the status of the operation. An empty routing tag signifies a successful
operation. For a full explanation of the routing tag, see Appendix: CylanceTcpService Protocol.

• The second line indicates how many features were generated for the file. For operations on a single file, there
is usually only one feature but in some circumstances, multiple features may be produced depending on the
type of file.

• The third line indicates that it was a scoring operation (starting with SampleScoring) or an explaining operation
(starting with TTMStatic).

• The block within curly braces is a valid JSON object with the results of the operation. While each block is valid
JSON, if multiple results were produced, the entire output is not valid JSON. See the archive example below.

Each scoring result includes the following information:

Field Description

CentroidHash This field indicates the hash of the centroids currently loaded into the model. A
value of 0 indicates that the model had no centroids loaded.

SampleFormat This field indicates the type of file that was scored.

Determinant This field specifies where the results were obtained from.

• MODEL indicates that the score was calculated by the machine-learning model.
• BLACKCENTROID and WHITECENTROID indicate that a centroid was hit and

the score was changed accordingly.
• BLACKLIST and WHITELIST indicate that the file hash was explicitly disallowed

(that is, it appeared in the restricted list) or allowed (that is, it appeared in
the approved list), respectively.

• PARSER specifies an error while parsing the file.
• ABORT indicates that the operation was aborted before processing was

completed because the scoring took longer than the timeout period to
complete.

• CONFIG indicates that the maximum nested depth was
exceeded when processing an archive, based on a setting from
CylanceTcpService.ini configuration file.

ModelVersion This field indicates the version of the model that produced the score. Because
JSON does not handle 64-bit integers well, the version is returned as a string.

SHA256 This field indicates the SHA256 hash of the file.

 | Appendix: CylanceTcpService Protocol | 69

Field Description

ParseStatus This field indicates the status of the parsing of the file.

• An OK status indicates that the file was parsed successfully.
• If the status is not OK, two additional fields, StatusCause and CauseMessage,

are included to provide more information about why the file could not be
parsed.

Score This field indicates the score for the file.

• If an error is generated (the value in the Determinant field is PARSER, CONFIG,
or ABORT), this field contains NaN (not a number).

• If the value in the Determinant field is WHITECENTROID or WHITELIST, this
field is always +1.0.

• If the value in the Determinant field is BLACKCENTROID or BLACKLIST, it is
always -1.0.

IsComplete For a single file, this value is always true.

When processing an archive, this value indicates whether the archive was
completely processed. If the archive has archives inside that exceed the
configured maximum nested depth, the value in this field is false to indicate that a
partial score was generated, and the value in the Determinant field is CONFIG.

When scoring archives, multiple results are returned. In this example, the test.tar file contains five PE files:

$ InfinityDaemonClient localhost:9002 p Score test.tar
Routing tag: ""
 6 features document(s)
 ----SampleScoring:test.tar----
 {
 "CentroidHash": "0",
 "SampleFormat": "ARC",
 "Determinant": "MODEL",
 "ModelVersion": "131975059429967678",
 "SHA256": "5D6D21AB0283E17643B64E856D07ACFEBD6FC52EB4B50AFD3CE6891A2A36ECBE",
 "ParseStatus": "OK",
 "Score": 1.0,
 "IsComplete": true
 }
 ----SampleScoring:test.tar|CommonUtils.dll----
 {
 "CentroidHash": "1359238976895146529",
 "SampleFormat": "PE",
 "Determinant": "MODEL",
 "ModelVersion": "131786662583688997",
 "SHA256": "7F3FD0F31FA0C6C840D917567670DA3B4A01EF7D64826E7326DEE8B32454296D",
 "ParseStatus": "OK",
 "Score": 1.0,
 "IsComplete": true
}
---- SampleScoring:test.tar|infinityd.exe ----
{
 "CentroidHash": "1359238976895146529",
 "SampleFormat": "PE",
 "Determinant": "MODEL",

 | Appendix: CylanceTcpService Protocol | 70

 "ModelVersion": "131786662583688997",
 "SHA256": "5AE1246EAADE01C5840338850D7B35BF70243FC13A8E006642445DB08CB42A50",
 "ParseStatus": "OK",
 "Score": 1.0,
 "IsComplete": true
}
---- SampleScoring:test.tar|InfinityDotNet.dll ----
{
 "CentroidHash": "1359238976895146529",
 "SampleFormat": "PE",
 "Determinant": "MODEL",
 "ModelVersion": "131786662583688997",
 "SHA256": "F0A7274835C6D32064ED1D1F09104E881F17ACF544A1ECDF2C430D30D9781EA4",
 "ParseStatus": "OK",
 "Score": 1.0,
 "IsComplete": true
}
---- SampleScoring:test.tar|infinitydt.exe ----
{
 "CentroidHash": "1359238976895146529",
 "SampleFormat": "PE",
 "Determinant": "MODEL",
 "ModelVersion": "131786662583688997",
 "SHA256": "19F30312D933256BD983DFC6F120F0521D7C97EFB62CB31C5C286F12E4F3C801",
 "ParseStatus": "OK",
 "Score": 1.0,
 "IsComplete": true
}
---- SampleScoring:test.tar|InstallerIDCore.dll ----
{
 "CentroidHash": "1359238976895146529",
 "SampleFormat": "PE",
 "Determinant": "MODEL",
 "ModelVersion": "131786662583688997",
 "SHA256": "40A3BD9E62336C60DAB2F43E81B8F708882D799D7FAE96746B047B036A3F47F1",
 "ParseStatus: "OK",
 "Score": 1.0,
 "IsComplete": true
}

For an archive, the first result should be of file format ARC, which indicates that an archive outer container was
successfully opened. The score for this result is always +1.0. The IsComplete flag in this top-level result indicates
whether the archive was completely explored or not. If the Determinant is PARSER, the archive is somehow
corrupt and could not be opened.

The other results follow as described above. The only difference is that the archive name is added to the file path
of each result, followed by a vertical bar (|). Multiple levels of archive nesting are each separated by a |. Because
the size of the feature-name field is limited, the name may be truncated. For complete details, see Appendix:
CylanceTcpService Protocol.

The Explain command produces threat indicators for a file:

$ InfinityDaemonClient localhost:9002 p Score infinityd.exe
Routing tag: ""
 1 features document(s)
 ----TTMStatic:infinityd.exe----
 {
 "features": {
 "Collection": {
 "OSInfoImports": true

 | Appendix: CylanceTcpService Protocol | 71

 },
 "Deception": {
 "ProtectionExamination": true
 }
 },
 "scores": {
 "Destruction": 0,
 "Deception": 5,
 "Collection" 5,
 "DataLoss": 0,
 "Anomalies": 0
 },
 "SampleFormat": "PE"
}

The first three lines of the response are the same as for scoring except that SampleScoring is replaced with
TTMStatic. Following the header is a JSON block with the threat indicators. It contains three top-level keys.

Field Description

features This field indicates the collection of threat-indicator features discovered in the file.
The contents of this block change based on the features in the file. The keys are
the category of the feature with the value of the threat indicator indexed by the
threat-indicator name.

scores This field indicates the total count of threat indicators for each category.

SampleFormat This field indicates the format of the file.

For a complete list of the supported threat indicators and their categories, see Appendix: Threat indicators.

When explaining an archive, the TTMStatic header begins each result with a path with the name of the archive (or
archives, if nested) separated by a vertical bar (|). Because the size of the feature-name field is limited, the name
may be truncated. For complete details on how feature names are truncated, see Appendix: CylanceTcpService
Protocol.

 | Appendix: CylanceTcpService Protocol | 72

Legal notice
©2024 BlackBerry Limited. Trademarks, including but not limited to BLACKBERRY, BBM, BES, EMBLEM Design,
ATHOC, CYLANCE and SECUSMART are the trademarks or registered trademarks of BlackBerry Limited, its
subsidiaries and/or affiliates, used under license, and the exclusive rights to such trademarks are expressly
reserved. All other trademarks are the property of their respective owners.

Patents, as applicable, identified at: www.blackberry.com/patents.

This documentation including all documentation incorporated by reference herein such as documentation
provided or made available on the BlackBerry website provided or made accessible "AS IS" and "AS AVAILABLE"
and without condition, endorsement, guarantee, representation, or warranty of any kind by BlackBerry Limited and
its affiliated companies ("BlackBerry") and BlackBerry assumes no responsibility for any typographical, technical,
or other inaccuracies, errors, or omissions in this documentation. In order to protect BlackBerry proprietary and
confidential information and/or trade secrets, this documentation may describe some aspects of BlackBerry
technology in generalized terms. BlackBerry reserves the right to periodically change information that is contained
in this documentation; however, BlackBerry makes no commitment to provide any such changes, updates,
enhancements, or other additions to this documentation to you in a timely manner or at all.

This documentation might contain references to third-party sources of information, hardware or software,
products or services including components and content such as content protected by copyright and/or third-
party websites (collectively the "Third Party Products and Services"). BlackBerry does not control, and is not
responsible for, any Third Party Products and Services including, without limitation the content, accuracy,
copyright compliance, compatibility, performance, trustworthiness, legality, decency, links, or any other aspect
of Third Party Products and Services. The inclusion of a reference to Third Party Products and Services in this
documentation does not imply endorsement by BlackBerry of the Third Party Products and Services or the third
party in any way.

EXCEPT TO THE EXTENT SPECIFICALLY PROHIBITED BY APPLICABLE LAW IN YOUR JURISDICTION, ALL
CONDITIONS, ENDORSEMENTS, GUARANTEES, REPRESENTATIONS, OR WARRANTIES OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY CONDITIONS, ENDORSEMENTS, GUARANTEES,
REPRESENTATIONS OR WARRANTIES OF DURABILITY, FITNESS FOR A PARTICULAR PURPOSE OR USE,
MERCHANTABILITY, MERCHANTABLE QUALITY, NON-INFRINGEMENT, SATISFACTORY QUALITY, OR TITLE, OR
ARISING FROM A STATUTE OR CUSTOM OR A COURSE OF DEALING OR USAGE OF TRADE, OR RELATED TO THE
DOCUMENTATION OR ITS USE, OR PERFORMANCE OR NON-PERFORMANCE OF ANY SOFTWARE, HARDWARE,
SERVICE, OR ANY THIRD PARTY PRODUCTS AND SERVICES REFERENCED HEREIN, ARE HEREBY EXCLUDED.
YOU MAY ALSO HAVE OTHER RIGHTS THAT VARY BY STATE OR PROVINCE. SOME JURISDICTIONS MAY
NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES AND CONDITIONS. TO THE EXTENT
PERMITTED BY LAW, ANY IMPLIED WARRANTIES OR CONDITIONS RELATING TO THE DOCUMENTATION TO
THE EXTENT THEY CANNOT BE EXCLUDED AS SET OUT ABOVE, BUT CAN BE LIMITED, ARE HEREBY LIMITED TO
NINETY (90) DAYS FROM THE DATE YOU FIRST ACQUIRED THE DOCUMENTATION OR THE ITEM THAT IS THE
SUBJECT OF THE CLAIM.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN YOUR JURISDICTION, IN NO EVENT SHALL
BLACKBERRY BE LIABLE FOR ANY TYPE OF DAMAGES RELATED TO THIS DOCUMENTATION OR ITS USE,
OR PERFORMANCE OR NON-PERFORMANCE OF ANY SOFTWARE, HARDWARE, SERVICE, OR ANY THIRD
PARTY PRODUCTS AND SERVICES REFERENCED HEREIN INCLUDING WITHOUT LIMITATION ANY OF THE
FOLLOWING DAMAGES: DIRECT, CONSEQUENTIAL, EXEMPLARY, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE,
OR AGGRAVATED DAMAGES, DAMAGES FOR LOSS OF PROFITS OR REVENUES, FAILURE TO REALIZE ANY
EXPECTED SAVINGS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, LOSS OF BUSINESS
OPPORTUNITY, OR CORRUPTION OR LOSS OF DATA, FAILURES TO TRANSMIT OR RECEIVE ANY DATA,
PROBLEMS ASSOCIATED WITH ANY APPLICATIONS USED IN CONJUNCTION WITH BLACKBERRY PRODUCTS OR
SERVICES, DOWNTIME COSTS, LOSS OF THE USE OF BLACKBERRY PRODUCTS OR SERVICES OR ANY PORTION
THEREOF OR OF ANY AIRTIME SERVICES, COST OF SUBSTITUTE GOODS, COSTS OF COVER, FACILITIES OR
SERVICES, COST OF CAPITAL, OR OTHER SIMILAR PECUNIARY LOSSES, WHETHER OR NOT SUCH DAMAGES

 | Legal notice | 73

https://www.blackberry.com/us/en/legal/blackberry-virtual-patent-marking

WERE FORESEEN OR UNFORESEEN, AND EVEN IF BLACKBERRY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN YOUR JURISDICTION, BLACKBERRY SHALL
HAVE NO OTHER OBLIGATION, DUTY, OR LIABILITY WHATSOEVER IN CONTRACT, TORT, OR OTHERWISE TO
YOU INCLUDING ANY LIABILITY FOR NEGLIGENCE OR STRICT LIABILITY.

THE LIMITATIONS, EXCLUSIONS, AND DISCLAIMERS HEREIN SHALL APPLY: (A) IRRESPECTIVE OF THE NATURE
OF THE CAUSE OF ACTION, DEMAND, OR ACTION BY YOU INCLUDING BUT NOT LIMITED TO BREACH OF
CONTRACT, NEGLIGENCE, TORT, STRICT LIABILITY OR ANY OTHER LEGAL THEORY AND SHALL SURVIVE A
FUNDAMENTAL BREACH OR BREACHES OR THE FAILURE OF THE ESSENTIAL PURPOSE OF THIS AGREEMENT
OR OF ANY REMEDY CONTAINED HEREIN; AND (B) TO BLACKBERRY AND ITS AFFILIATED COMPANIES, THEIR
SUCCESSORS, ASSIGNS, AGENTS, SUPPLIERS (INCLUDING AIRTIME SERVICE PROVIDERS), AUTHORIZED
BLACKBERRY DISTRIBUTORS (ALSO INCLUDING AIRTIME SERVICE PROVIDERS) AND THEIR RESPECTIVE
DIRECTORS, EMPLOYEES, AND INDEPENDENT CONTRACTORS.

IN ADDITION TO THE LIMITATIONS AND EXCLUSIONS SET OUT ABOVE, IN NO EVENT SHALL ANY DIRECTOR,
EMPLOYEE, AGENT, DISTRIBUTOR, SUPPLIER, INDEPENDENT CONTRACTOR OF BLACKBERRY OR ANY
AFFILIATES OF BLACKBERRY HAVE ANY LIABILITY ARISING FROM OR RELATED TO THE DOCUMENTATION.

Prior to subscribing for, installing, or using any Third Party Products and Services, it is your responsibility to
ensure that your airtime service provider has agreed to support all of their features. Some airtime service
providers might not offer Internet browsing functionality with a subscription to the BlackBerry® Internet Service.
Check with your service provider for availability, roaming arrangements, service plans and features. Installation
or use of Third Party Products and Services with BlackBerry's products and services may require one or more
patent, trademark, copyright, or other licenses in order to avoid infringement or violation of third party rights. You
are solely responsible for determining whether to use Third Party Products and Services and if any third party
licenses are required to do so. If required you are responsible for acquiring them. You should not install or use
Third Party Products and Services until all necessary licenses have been acquired. Any Third Party Products and
Services that are provided with BlackBerry's products and services are provided as a convenience to you and are
provided "AS IS" with no express or implied conditions, endorsements, guarantees, representations, or warranties
of any kind by BlackBerry and BlackBerry assumes no liability whatsoever, in relation thereto. Your use of Third
Party Products and Services shall be governed by and subject to you agreeing to the terms of separate licenses
and other agreements applicable thereto with third parties, except to the extent expressly covered by a license or
other agreement with BlackBerry.

The terms of use of any BlackBerry product or service are set out in a separate license or other agreement with
BlackBerry applicable thereto. NOTHING IN THIS DOCUMENTATION IS INTENDED TO SUPERSEDE ANY EXPRESS
WRITTEN AGREEMENTS OR WARRANTIES PROVIDED BY BLACKBERRY FOR PORTIONS OF ANY BLACKBERRY
PRODUCT OR SERVICE OTHER THAN THIS DOCUMENTATION.

BlackBerry Enterprise Software incorporates certain third-party software. The license and copyright information
associated with this software is available at http://worldwide.blackberry.com/legal/thirdpartysoftware.jsp.

BlackBerry Limited
2200 University Avenue East
Waterloo, Ontario
Canada N2K 0A7

BlackBerry UK Limited
Ground Floor, The Pearce Building, West Street,
Maidenhead, Berkshire SL6 1RL
United Kingdom

Published in Canada

 | Legal notice | 74

https://www.blackberry.com/us/en/legal/third-party-software

	Contents
	What is the Cylance Engine?
	Data Flow: Analyzing a file with the Cylance Engine

	How the Cylance Engine analyzes a file
	Scoring files with Cylance AI
	Scoring and threat indicators
	Score generated by the Cylance Engine
	Role of threat indicators in scoring

	Use of centroids in the Cylance Engine
	Restricted and allowed list of file hashes

	System requirements for the Cylance Engine
	Hardware requirements
	Supported operating systems
	Requirements: Microsoft .NET
	Requirements: Mono
	Requirements: Python
	Requirements: Multiple instances of the Cylance Engine on one machine

	Installing and updating the Cylance Engine
	Install the Cylance Engine on a Linux distribution
	Query the version of your Cylance Engine on a Linux distribution
	Update the version of your Cylance Engine on a Linux distribution
	Remove the Cylance Engine from a Linux distribution
	Install the Cylance Engine on a Windows distribution
	Query the version of your Cylance Engine on a Windows distribution
	Update the version of your Cylance Engine on a Windows distribution
	Remove the Cylance Engine from a Windows distribution

	File-scoring service
	Samplescored service script
	Sentinel file
	Environment variables
	Command-line options for the Cylance Engine
	Configuration file for the Cylance Engine

	File-scoring service protocols
	Cylance RESTful API
	Getting model details
	Scoring a file
	Explaining the score for a file
	Shutting down the service
	Password-protected archives

	Appendix: Cylance Infinity Data Service
	Authentication of requests
	Response status codes
	Service endpoints
	Centroids endpoint
	Wblist endpoint

	Appendix: Threat indicators
	Anomalies
	Collection
	Data loss
	Deception
	Destruction
	Shellcodes
	Miscellaneous indicators

	Appendix: Prometheus monitoring support
	Appendix: CylanceTcpService Protocol
	Process command
	Shutdown command
	Multiple scores for a file
	Classless-based and activity-class-based scoring
	Passwords specified for archives
	File-scoring applications
	Samplescore client
	Ttmstatic script
	InfinityDaemonClient utility

	Legal notice

